Abstract:Pose estimation refers to tracking a human's full body posture, including their head, torso, arms, and legs. The problem is challenging in practical settings where the number of body sensors are limited. Past work has shown promising results using conditional diffusion models, where the pose prediction is conditioned on both <location, rotation> measurements from the sensors. Unfortunately, nearly all these approaches generalize poorly across users, primarly because location measurements are highly influenced by the body size of the user. In this paper, we formulate pose estimation as an inverse problem and design an algorithm capable of zero-shot generalization. Our idea utilizes a pre-trained diffusion model and conditions it on rotational measurements alone; the priors from this model are then guided by a likelihood term, derived from the measured locations. Thus, given any user, our proposed InPose method generatively estimates the highly likely sequence of poses that best explains the sparse on-body measurements.




Abstract:This paper considers the problem of audio source separation where the goal is to isolate a target audio signal (say Alice's speech) from a mixture of multiple interfering signals (e.g., when many people are talking). This problem has gained renewed interest mainly due to the significant growth in voice controlled devices, including robots in homes, offices, and other public facilities. Although a rich body of work exists on the core topic of source separation, we find that robotic motion of the microphone -- say the robot's head -- is a complementary opportunity to past approaches. Briefly, we show that rotating the microphone array to the correct orientation can produce desired aliasing between two interferers, causing the two interferers to pose as one. In other words, a mixture of K signals becomes a mixture of (K-1), a mathematically concrete gain. We show that the gain translates well to practice provided two mobility-related challenges can be mitigated. This paper is focused on mitigating these challenges and demonstrating the end-to-end performance on a fully functional prototype. We believe that our Rotational Source Separation module RoSS could be plugged into actual robot heads, or into other devices (like Amazon Show) that are also capable of rotation.