Abstract:Integration of AI into environmental regulation represents a significant advancement in data management. It offers promising results in both data protection plus algorithmic fairness. This research addresses the critical need for sustainable data protection in the era of ever evolving cyber threats. Traditional encryption methods face limitations in handling the dynamic nature of environmental data. This necessitates the exploration of advanced cryptographic techniques. The objective of this study is to evaluate how AI can enhance these techniques to ensure robust data protection while facilitating fair algorithmic management. The methodology involves a comprehensive review of current advancements in AI-enhanced homomorphic encryption (HE) and multi-party computation (MPC). It is coupled with an analysis of how these techniques can be applied to environmental data regulation. Key findings indicate that AI-driven dynamic key management, adaptive encryption schemes, and optimized computational efficiency in HE, alongside AI-enhanced protocol optimization and fault mitigation in MPC, significantly improve the security of environmental data processing. These findings highlight a crucial research gap in the intersection of AI, cyber laws, and environmental regulation, particularly in terms of addressing algorithmic bias, transparency, and accountability. The implications of this research underscore the need for stricter cyber laws. Also, the development of comprehensive regulations to safeguard sensitive environmental data. Future efforts should focus on refining AI systems to balance security with privacy and ensuring that regulatory frameworks can adapt to technological advancements. This study provides a foundation for future research aimed at achieving secure sustainable environmental data management through AI innovations.
Abstract:Artificial intelligence's rapid integration with intellectual property rights necessitates assessment of its impact on trade secrets, copyrights and patents. This study addresses lacunae in existing laws where India lacks AI-specific provisions, creating doctrinal inconsistencies and enforcement inefficacies. Global discourse on AI-IPR protections remains nascent. The research identifies gaps in Indian IP laws' adaptability to AI-generated outputs: trade secret protection is inadequate against AI threats; standardized inventorship criteria are absent. Employing doctrinal and comparative methodology, it scrutinizes legislative texts, judicial precedents and policy instruments across India, US, UK and EU. Preliminary findings reveal shortcomings: India's contract law creates fragmented trade secret regime; Section 3(k) of Indian Patents Act blocks AI invention patenting; copyright varies in authorship attribution. The study proposes harmonized legal taxonomy accommodating AI's role while preserving innovation incentives. India's National AI Strategy (2024) shows progress but legislative clarity is imperative. This contributes to global discourse with AI-specific IP protections ensuring resilience and equitable innovation. Promising results underscore recalibrating India's IP jurisprudence for global alignment.
Abstract:The study investigates the juridico-technological architecture of international public health instruments, focusing on their implementation across India, the European Union, the United States and low- and middle-income countries (LMICs), particularly in Sub-Saharan Africa. It addresses a research lacuna: the insufficient harmonisation between normative health law and algorithmic public health infrastructures in resource-constrained jurisdictions. The principal objective is to assess how artificial intelligence augments implementation of instruments grounded in IHR 2005 and the WHO FCTC while identifying doctrinal and infrastructural bottlenecks. Using comparative doctrinal analysis and legal-normative mapping, the study triangulates legislative instruments, WHO monitoring frameworks, AI systems including BlueDot, Aarogya Setu and EIOS, and compliance metrics. Preliminary results show that AI has improved early detection, surveillance precision and responsiveness in high-capacity jurisdictions, whereas LMICs face infrastructural deficits, data privacy gaps and fragmented legal scaffolding. The findings highlight the relevance of the EU Artificial Intelligence Act and GDPR as regulatory prototypes for health-oriented algorithmic governance and contrast them with embryonic AI integration and limited internet penetration in many LMICs. The study argues for embedding AI within a rights-compliant, supranationally coordinated regulatory framework to secure equitable health outcomes and stronger compliance. It proposes a model for algorithmic treaty-making inspired by FCTC architecture and calls for WHO-led compliance mechanisms modelled on the WTO Dispute Settlement Body to enhance pandemic preparedness, surveillance equity and transnational governance resilience.
Abstract:AI revolutionizes transportation through autonomous vehicles (AVs) but introduces complex criminal liability issues regarding infractions. This study employs a comparative legal analysis of primary statutes, real-world liability claims, and academic literature across the US, Germany, UK, China, and India; jurisdictions selected for their technological advancement and contrasting regulatory approaches. The research examines the attribution of human error, AI moral agency, and the identification of primary offenders in AV incidents. Findings reveal fragmented regulatory landscapes: India and the US rely on loose networks of state laws, whereas the UK enacted the pioneering Automated and Electric Vehicles Act 2018. Germany enforces strict safety standards, distinguishing liability based on the vehicle's operating mode, while China similarly aims for a stringent liability regime. The study concludes that globally harmonized legal standards are essential to foster technological innovation while ensuring minimum risk and clear liability attribution.
Abstract:The integration of generative Artificial Intelligence into the digital ecosystem necessitates a critical re-evaluation of Indian criminal jurisprudence regarding computational forensics integrity. While algorithmic efficiency enhances evidence extraction, a research gap exists regarding the Digital Personal Data Protection Act, 2023's compatibility with adversarial AI threats, specifically anti-forensics and deepfakes. This study scrutinizes the AI "dual-use" dilemma, functioning as both a cyber-threat vector and forensic automation mechanism, to delineate privacy boundaries in high-stakes investigations. Employing a doctrinal legal methodology, the research synthesizes statutory analysis of the DPDP Act with global ethical frameworks (IEEE, EU) to evaluate regulatory efficacy. Preliminary results indicate that while Machine Learning offers high accuracy in pattern recognition, it introduces vulnerabilities regarding data poisoning and algorithmic bias. Findings highlight a critical tension between the Act's data minimization principles and forensic data retention requirements. Furthermore, the paper identifies that existing legal definitions inadequately encompass AI-driven "tool crimes" and "target crimes." Consequently, the research proposes a "human-centric" forensic model prioritizing explainable AI (XAI) to ensure evidence admissibility. These implications suggest that synchronizing Indian privacy statutes with international forensic standards is imperative to mitigate synthetic media risks, establishing a roadmap for future legislative amendments and technical standardization.
Abstract:AI-powered greenwashing has emerged as an insidious challenge within corporate sustainability governance, exacerbating the opacity of environmental disclosures and subverting regulatory oversight. This study conducts a comparative legal analysis of criminal liability for AI-mediated greenwashing across India, the US, and the EU, exposing doctrinal lacunae in attributing culpability when deceptive claims originate from algorithmic systems. Existing statutes exhibit anthropocentric biases by predicating liability on demonstrable human intent, rendering them ill-equipped to address algorithmic deception. The research identifies a critical gap in jurisprudential adaptation, as prevailing fraud statutes remain antiquated vis-à-vis AI-generated misrepresentation. Utilising a doctrinal legal methodology, this study systematically dissects judicial precedents and statutory instruments, yielding results regarding the potential expansion of corporate criminal liability. Findings underscore the viability of strict liability models, recalibrated governance frameworks for AI accountability, and algorithmic due diligence mandates under ESG regimes. Comparative insights reveal jurisdictional disparities, with the EU Corporate Sustainability Due Diligence Directive (CSDDD) offering a potential transnational model. This study contributes to AI ethics and environmental jurisprudence by advocating for a hybrid liability framework integrating algorithmic risk assessment with legal personhood constructs, ensuring algorithmic opacity does not preclude liability enforcement.