Abstract:Reconfigurable intelligent surface (RIS) is a promising technology to enhance the spectral and energy efficiency in a wireless communication system. The design of the phase shifts of an RIS in every channel coherence interval demands a huge training overhead, making its deployment practically infeasible. The design complexity can be significantly reduced by exploiting the second-order statistics of the channels. This paper is the extension of our previous work to the design of an RIS for the multi-user setup, where we employ maximisation of the lower bound of the achievable sum-rate of the users. Unlike for the single-user case, obtaining a closed-form expression for the update of the filters and phase shifts is more challenging in the multi-user case. We resort to the fractional programming (FP) approach and the non-convex block coordinate descent (BCD) method to solve the optimisation problem. As the phase shifts of the RIS obtained by the proposed algorithms are based on the statistical channel knowledge, they do not need to be updated in every channel coherence interval.
Abstract:Reconfigurable intelligent surface (RIS) is considered a prospective technology for beyond fifth-generation (5G) networks to improve the spectral and energy efficiency at a low cost. Prior works on the RIS mainly rely on perfect channel state information (CSI), which imposes a huge computational complexity. This work considers a single-user RIS-assisted communication system, where the second-order statistical knowledge of the channels is exploited to reduce the training overhead. We present algorithms that do not require estimation of the CSI and reconfiguration of the RIS in every channel coherence interval, which constitutes one of the most critical practical issues in an RIS-aided system.