Abstract:Software testing has progressed toward intelligent automation, yet current AI-based test generators still suffer from static, single-shot outputs that frequently produce invalid, redundant, or non-executable tests due to the lack of execution aware feedback. This paper introduces an agentic multi-model testing framework a closed-loop, self-correcting system in which a Test Generation Agent, an Execution and Analysis Agent, and a Review and Optimization Agent collaboratively generate, execute, analyze, and refine tests until convergence. By using sandboxed execution, detailed failure reporting, and iterative regeneration or patching of failing tests, the framework autonomously improves test quality and expands coverage. Integrated into a CI/CD-compatible pipeline, it leverages reinforcement signals from coverage metrics and execution outcomes to guide refinement. Empirical evaluations on microservice based applications show up to a 60% reduction in invalid tests, 30% coverage improvement, and significantly reduced human effort compared to single-model baselines demonstrating that multi-agent, feedback-driven loops can evolve software testing into an autonomous, continuously learning quality assurance ecosystem for self-healing, high-reliability codebases.
Abstract:As modern software systems grow in complexity and scale, their ability to autonomously detect, diagnose, and recover from failures becomes increasingly vital. Drawing inspiration from biological healing - where the human body detects damage, signals the brain, and activates targeted recovery - this paper explores the concept of self-healing software driven by artificial intelligence. We propose a novel framework that mimics this biological model system observability tools serve as sensory inputs, AI models function as the cognitive core for diagnosis and repair, and healing agents apply targeted code and test modifications. By combining log analysis, static code inspection, and AI-driven generation of patches or test updates, our approach aims to reduce downtime, accelerate debugging, and enhance software resilience. We evaluate the effectiveness of this model through case studies and simulations, comparing it against traditional manual debugging and recovery workflows. This work paves the way toward intelligent, adaptive and self-reliant software systems capable of continuous healing, akin to living organisms.