



Abstract:Machine learning models play a vital role in the prediction task in several fields of study. In this work, we utilize the ability of machine learning algorithms for the prediction of occurrence of extreme events in a nonlinear mechanical system. Extreme events are rare events which occur ubiquitously in nature. We consider four machine learning models, namely Logistic Regression, Support Vector Machine, Random Forest and Multi-Layer Perceptron in our prediction task. We train these four machine learning models using training set data and compute the performance of each model using the test set data. We show that Multi-Layer Perceptron model performs better among the four models in the prediction of extreme events in the considered system. The persistent behaviour of the considered machine learning models are cross-checked with randomly shuffled training set and test set data.




Abstract:We predict the emergence of extreme events in a parametrically driven nonlinear dynamical system using three Deep Learning models, namely Multi-Layer Perceptron, Convolutional Neural Network and Long Short-Term Memory. The Deep Learning models are trained using the training set and are allowed to predict the test set data. After prediction, the time series of the actual and the predicted values are plotted one over the other in order to visualize the performance of the models. Upon evaluating the Root Mean Square Error value between predicted and the actual values of all three models, we find that the Long Short-Term Memory model can serve as the best model to forecast the chaotic time series and to predict the emergence of extreme events for the considered system.