Abstract:Local optima networks (LONs) capture fitness landscape information. They are typically constructed in a black-box manner; information about the problem structure is not utilised. This also applies to the analysis of LONs: knowledge about the problem, such as interaction between variables, is not considered. We challenge this status-quo with an alternative approach: we consider how LON analysis can be improved by incorporating subfunction-based information - this can either be known a-priori or learned during search. To this end, LONs are constructed for several benchmark pseudo-boolean problems using three approaches: firstly, the standard algorithm; a second algorithm which uses deterministic grey-box crossover; and a third algorithm which selects perturbations based on learned information about variable interactions. Metrics related to subfunction changes in a LON are proposed and compared with metrics from previous literature which capture other aspects of a LON. Incorporating problem structure in LON construction and analysing it can bring enriched insight into optimisation dynamics. Such information may be crucial to understanding the difficulty of solving a given problem with state-of-the-art linkage learning optimisers. In light of the results, we suggest incorporation of problem structure as an alternative paradigm in landscape analysis for problems with known or suspected subfunction structure.
Abstract:Many real-world problems have expensive-to-compute fitness functions and are multi-objective in nature. Surrogate-assisted evolutionary algorithms are often used to tackle such problems. Despite this, literature about analysing the fitness landscapes induced by surrogate models is limited, and even non-existent for multi-objective problems. This study addresses this critical gap by comparing landscapes of the true fitness function with those of surrogate models for multi-objective functions. Moreover, it does so temporally by examining landscape features at different points in time during optimisation, in the vicinity of the population at that point in time. We consider the BBOB bi-objective benchmark functions in our experiments. The results of the fitness landscape analysis reveals significant differences between true and surrogate features at different time points during optimisation. Despite these differences, the true and surrogate landscape features still show high correlations between each other. Furthermore, this study identifies which landscape features are related to search and demonstrates that both surrogate and true landscape features are capable of predicting algorithm performance. These findings indicate that temporal analysis of the landscape features may help to facilitate the design of surrogate switching approaches to improve performance in multi-objective optimisation.