Abstract:We present Dargana, a fine-tuned variant of the EarthPT time-series foundation model that achieves specialisation using <3% of its pre-training data volume and 5% of its pre-training compute. Dargana is fine-tuned to generate regularly updated classification of tree canopy cover at 10m resolution, distinguishing conifer and broadleaved tree types. Using Cornwall, UK, as a test case, the model achieves a pixel-level ROC-AUC of 0.98 and a PR-AUC of 0.83 on unseen satellite imagery. Dargana can identify fine structures like hedgerows and coppice below the training sample limit, and can track temporal changes to canopy cover such as new woodland establishment. Our results demonstrate how pre-trained Large Observation Models like EarthPT can be specialised for granular, dynamic land cover monitoring from space, providing a valuable, scalable tool for natural capital management and conservation.
Abstract:This work presents AstroPT, an autoregressive pretrained transformer developed with astronomical use-cases in mind. The AstroPT models presented here have been pretrained on 8.6 million $512 \times 512$ pixel $grz$-band galaxy postage stamp observations from the DESI Legacy Survey DR8. We train a selection of foundation models of increasing size from 1 million to 2.1 billion parameters, and find that AstroPT follows a similar saturating log-log scaling law to textual models. We also find that the models' performances on downstream tasks as measured by linear probing improves with model size up to the model parameter saturation point. We believe that collaborative community development paves the best route towards realising an open source `Large Observation Model' -- a model trained on data taken from the observational sciences at the scale seen in natural language processing. To this end, we release the source code, weights, and dataset for AstroPT under the MIT license, and invite potential collaborators to join us in collectively building and researching these models.