Abstract:Accurate vehicle delay estimation is essential for evaluating the performance of signalized intersections and informing traffic management strategies. Delay reflects congestion levels and affects travel time reliability, fuel use, and emissions. Machine learning (ML) offers a scalable, cost-effective alternative; However, conventional models typically assume that training and testing data follow the same distribution, an assumption that is rarely satisfied in real-world applications. Variations in road geometry, signal timing, and driver behavior across intersections often lead to poor generalization and reduced model accuracy. To address this issue, this study introduces a domain adaptation (DA) framework for estimating vehicle delays across diverse intersections. The framework separates data into source and target domains, extracts key traffic features, and fine-tunes the model using a small, labeled subset from the target domain. A novel DA model, Gradient Boosting with Balanced Weighting (GBBW), reweights source data based on similarity to the target domain, improving adaptability. The framework is tested using data from 57 heterogeneous intersections in Pima County, Arizona. Performance is evaluated against eight state-of-the-art ML regression models and seven instance-based DA methods. Results demonstrate that the GBBW framework provides more accurate and robust delay estimates. This approach supports more reliable traffic signal optimization, congestion management, and performance-based planning. By enhancing model transferability, the framework facilitates broader deployment of machine learning techniques in real-world transportation systems.
Abstract:Urban transportation networks are vital for the efficient movement of people and goods, necessitating effective traffic management and planning. An integral part of traffic management is understanding the turning movement counts (TMCs) at intersections, Accurate TMCs at intersections are crucial for traffic signal control, congestion mitigation, and road safety. In general, TMCs are obtained using physical sensors installed at intersections, but this approach can be cost-prohibitive and technically challenging, especially for cities with extensive road networks. Recent advancements in machine learning and data-driven approaches have offered promising alternatives for estimating TMCs. Traffic patterns can vary significantly across different intersections due to factors such as road geometry, traffic signal settings, and local driver behaviors. This domain discrepancy limits the generalizability and accuracy of machine learning models when applied to new or unseen intersections. In response to these limitations, this research proposes a novel framework leveraging domain adaptation (DA) to estimate TMCs at intersections by using traffic controller event-based data, road infrastructure data, and point-of-interest (POI) data. Evaluated on 30 intersections in Tucson, Arizona, the performance of the proposed DA framework was compared with state-of-the-art models and achieved the lowest values in terms of Mean Absolute Error and Root Mean Square Error.
Abstract:Urban transportation networks are vital for the efficient movement of people and goods, necessitating effective traffic management and planning. An integral part of traffic management is understanding the turning movement counts (TMCs) at intersections, Accurate TMCs at intersections are crucial for traffic signal control, congestion mitigation, and road safety. In general, TMCs are obtained using physical sensors installed at intersections, but this approach can be cost-prohibitive and technically challenging, especially for cities with extensive road networks. Recent advancements in machine learning and data-driven approaches have offered promising alternatives for estimating TMCs. Traffic patterns can vary significantly across different intersections due to factors such as road geometry, traffic signal settings, and local driver behaviors. This domain discrepancy limits the generalizability and accuracy of machine learning models when applied to new or unseen intersections. In response to these limitations, this research proposes a novel framework leveraging transfer learning (TL) to estimate TMCs at intersections by using traffic controller event-based data, road infrastructure data, and point-of-interest (POI) data. Evaluated on 30 intersections in Tucson, Arizona, the performance of the proposed TL model was compared with eight state-of-the-art regression models and achieved the lowest values in terms of Mean Absolute Error and Root Mean Square Error.