Abstract:Clustering algorithms are an essential part of the unsupervised data science ecosystem, and extrinsic evaluation of clustering algorithms requires a method for comparing the detected clustering to a ground truth clustering. In a general setting, the detected and ground truth clusterings may have outliers (objects belonging to no cluster), overlapping clusters (objects may belong to more than one cluster), or both, but methods for comparing these clusterings are currently undeveloped. In this note, we define a pragmatic similarity measure for comparing clusterings with overlaps and outliers, show that it has several desirable properties, and experimentally confirm that it is not subject to several common biases afflicting other clustering comparison measures.
Abstract:The Adjusted Rand Index (ARI) is a widely used method for comparing hard clusterings, but requires a choice of random model that is often left implicit. Several recent works have extended the Rand Index to fuzzy clusterings, but the assumptions of the most common random model is difficult to justify in fuzzy settings. We propose a single framework for computing the ARI with three random models that are intuitive and explainable for both hard and fuzzy clusterings, along with the benefit of lower computational complexity. The theory and assumptions of the proposed models are contrasted with the existing permutation model. Computations on synthetic and benchmark data show that each model has distinct behaviour, meaning that accurate model selection is important for the reliability of results.