Abstract:Next Point-of-Interest (POI) recommendation is a fundamental task in location-based services. While recent advances leverage Large Language Model (LLM) for sequential modeling, existing LLM-based approaches face two key limitations: (i) strong reliance on the contextual completeness of user histories, resulting in poor performance on out-of-history (OOH) scenarios; (ii) limited scalability, due to the restricted context window of LLMs, which limits their ability to access and process a large number of candidate POIs. To address these challenges, we propose Tool4POI, a novel tool-augmented framework that enables LLMs to perform open-set POI recommendation through external retrieval and reasoning. Tool4POI consists of three key modules: preference extraction module, multi-turn candidate retrieval module, and reranking module, which together summarize long-term user interests, interact with external tools to retrieve relevant POIs, and refine final recommendations based on recent behaviors. Unlike existing methods, Tool4POI requires no task-specific fine-tuning and is compatible with off-the-shelf LLMs in a plug-and-play manner. Extensive experiments on three real-world datasets show that Tool4POI substantially outperforms state-of-the-art baselines, achieving up to 40% accuracy on challenging OOH scenarios where existing methods fail, and delivering average improvements of 20% and 30% on Acc@5 and Acc@10, respectively.




Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, yet they often exhibit a specific cultural biases, neglecting the values and linguistic diversity of low-resource regions. This cultural bias not only undermines universal equality, but also risks reinforcing stereotypes and perpetuating discrimination. To address this, we propose CulFiT, a novel culturally-aware training paradigm that leverages multilingual data and fine-grained reward modeling to enhance cultural sensitivity and inclusivity. Our approach synthesizes diverse cultural-related questions, constructs critique data in culturally relevant languages, and employs fine-grained rewards to decompose cultural texts into verifiable knowledge units for interpretable evaluation. We also introduce GlobalCultureQA, a multilingual open-ended question-answering dataset designed to evaluate culturally-aware responses in a global context. Extensive experiments on three existing benchmarks and our GlobalCultureQA demonstrate that CulFiT achieves state-of-the-art open-source model performance in cultural alignment and general reasoning.