Abstract:A fundamental question in modern machine learning is why large, over-parameterized models, such as deep neural networks and transformers, tend to generalize well, even when their number of parameters far exceeds the number of training samples. We investigate this phenomenon through the lens of information theory, grounded in universal learning theory. Specifically, we study a Bayesian mixture learner with log-loss and (almost) uniform prior over an expansive hypothesis class. Our key result shows that the learner's regret is not determined by the overall size of the hypothesis class, but rather by the cumulative probability of all models that are close, in Kullback-Leibler divergence distance, to the true data-generating process. We refer to this cumulative probability as the weight of the hypothesis. This leads to a natural notion of model simplicity: simple models are those with large weight and thus require fewer samples to generalize, while complex models have small weight and need more data. This perspective provides a rigorous and intuitive explanation for why over-parameterized models often avoid overfitting: the presence of simple hypotheses allows the posterior to concentrate on them when supported by the data. We further bridge theory and practice by recalling that stochastic gradient descent with Langevin dynamics samples from the correct posterior distribution, enabling our theoretical learner to be approximated using standard machine learning methods combined with ensemble learning. Our analysis yields non-uniform regret bounds and aligns with key practical concepts such as flat minima and model distillation. The results apply broadly across online, batch, and supervised learning settings, offering a unified and principled understanding of the generalization behavior of modern AI systems.
Abstract:Modern machine learning systems have been applied successfully to a variety of tasks in recent years but making such systems robust against adversarially chosen modifications of input instances seems to be a much harder problem. It is probably fair to say that no fully satisfying solution has been found up to date and it is not clear if the standard formulation even allows for a principled solution. Hence, rather than following the classical path of bounded perturbations, we consider a model similar to the quantum PAC-learning model introduced by Bshouty and Jackson [1995]. Our first key contribution shows that in this model we can reduce adversarial robustness to the conjunction of two classical learning theory problems, namely (Problem 1) the problem of finding generative models and (Problem 2) the problem of devising classifiers that are robust with respect to distributional shifts. Our second key contribution is that the considered framework does not rely on specific (and hence also somewhat arbitrary) threat models like $\ell_p$ bounded perturbations. Instead, our reduction guarantees that in order to solve the adversarial robustness problem in our model it suffices to consider a single distance notion, i.e. the Hellinger distance. From the technical perspective our protocols are heavily based on the recent advances on delegation of quantum computation, e.g. Mahadev [2018]. Although the considered model is quantum and therefore not immediately applicable to ``real-world'' situations, one might hope that in the future either one can find a way to embed ``real-world'' problems into a quantum framework or that classical algorithms can be found that are capable of mimicking their powerful quantum counterparts.