Abstract:This study explores the use of large language models (LLMs) to enhance datasets and improve irony detection in 19th-century Latin American newspapers. Two strategies were employed to evaluate the efficacy of BERT and GPT-4o models in capturing the subtle nuances nature of irony, through both multi-class and binary classification tasks. First, we implemented dataset enhancements focused on enriching emotional and contextual cues; however, these showed limited impact on historical language analysis. The second strategy, a semi-automated annotation process, effectively addressed class imbalance and augmented the dataset with high-quality annotations. Despite the challenges posed by the complexity of irony, this work contributes to the advancement of sentiment analysis through two key contributions: introducing a new historical Spanish dataset tagged for sentiment analysis and irony detection, and proposing a semi-automated annotation methodology where human expertise is crucial for refining LLMs results, enriched by incorporating historical and cultural contexts as core features.
Abstract:Natural Language Inference (NLI), also known as Recognizing Textual Entailment (RTE), serves as a crucial area within the domain of Natural Language Processing (NLP). This area fundamentally empowers machines to discern semantic relationships between assorted sections of text. Even though considerable work has been executed for the English language, it has been observed that efforts for the Spanish language are relatively sparse. Keeping this in view, this paper focuses on generating a multi-genre Spanish dataset for NLI, ESNLIR, particularly accounting for causal Relationships. A preliminary baseline has been conceptualized and subjected to an evaluation, leveraging models drawn from the BERT family. The findings signify that the enrichment of genres essentially contributes to the enrichment of the model's capability to generalize. The code, notebooks and whole datasets for this experiments is available at: https://zenodo.org/records/15002575. If you are interested only in the dataset you can find it here: https://zenodo.org/records/15002371.