Abstract:Increased access to reliable health information is essential for non-English-speaking populations, yet resources in Bangla for disease prediction remain limited. This study addresses this gap by developing a comprehensive Bangla symptoms-disease dataset containing 758 unique symptom-disease relationships spanning 85 diseases. To ensure transparency and reproducibility, we also make our dataset publicly available. The dataset enables the prediction of diseases based on Bangla symptom inputs, supporting healthcare accessibility for Bengali-speaking populations. Using this dataset, we evaluated multiple machine learning models to predict diseases based on symptoms provided in Bangla and analyzed their performance on our dataset. Both soft and hard voting ensemble approaches combining top-performing models achieved 98\% accuracy, demonstrating superior robustness and generalization. Our work establishes a foundational resource for disease prediction in Bangla, paving the way for future advancements in localized health informatics and diagnostic tools. This contribution aims to enhance equitable access to health information for Bangla-speaking communities, particularly for early disease detection and healthcare interventions.
Abstract:Convolutional Neural Networks (CNNs) have demonstrated remarkable success in image classification tasks; however, the choice between designing a custom CNN from scratch and employing established pre-trained architectures remains an important practical consideration. In this work, we present a comparative analysis of a custom-designed CNN and several widely used deep learning architectures, including VGG-16, ResNet-50, and MobileNet, for an image classification task. The custom CNN is developed and trained from scratch, while the popular architectures are employed using transfer learning under identical experimental settings. All models are evaluated using standard performance metrics such as accuracy, precision, recall, and F1-score. Experimental results show that pre-trained CNN architectures consistently outperform the custom CNN in terms of classification accuracy and convergence speed, particularly when training data is limited. However, the custom CNN demonstrates competitive performance with significantly fewer parameters and reduced computational complexity. This study highlights the trade-offs between model complexity, performance, and computational efficiency, and provides practical insights into selecting appropriate CNN architectures for image classification problems.
Abstract:Skin cancer can be identified by dermoscopic examination and ocular inspection, but early detection significantly increases survival chances. Artificial intelligence (AI), using annotated skin images and Convolutional Neural Networks (CNNs), improves diagnostic accuracy. This paper presents an early skin cancer classification method using a soft voting ensemble of CNNs. In this investigation, three benchmark datasets, namely HAM10000, ISIC 2016, and ISIC 2019, were used. The process involved rebalancing, image augmentation, and filtering techniques, followed by a hybrid dual encoder for segmentation via transfer learning. Accurate segmentation focused classification models on clinically significant features, reducing background artifacts and improving accuracy. Classification was performed through an ensemble of MobileNetV2, VGG19, and InceptionV3, balancing accuracy and speed for real-world deployment. The method achieved lesion recognition accuracies of 96.32\%, 90.86\%, and 93.92\% for the three datasets. The system performance was evaluated using established skin lesion detection metrics, yielding impressive results.
Abstract:Disease-symptom datasets are significant and in demand for medical research, disease diagnosis, clinical decision-making, and AI-driven health management applications. These datasets help identify symptom patterns associated with specific diseases, thus improving diagnostic accuracy and enabling early detection. The dataset presented in this study systematically compiles disease-symptom relationships from various online sources, medical literature, and publicly available health databases. The data was gathered through analyzing peer-reviewed medical articles, clinical case studies, and disease-symptom association reports. Only the verified medical sources were included in the dataset, while those from non-peer-reviewed and anecdotal sources were excluded. The dataset is structured in a tabular format, where the first column represents diseases, and the remaining columns represent symptoms. Each symptom cell contains a binary value (1 or 0), indicating whether a symptom is associated with a disease (1 for presence, 0 for absence). Thereby, this structured representation makes the dataset very useful for a wide range of applications, including machine learning-based disease prediction, clinical decision support systems, and epidemiological studies. Although there are some advancements in the field of disease-symptom datasets, there is a significant gap in structured datasets for the Bangla language. This dataset aims to bridge that gap by facilitating the development of multilingual medical informatics tools and improving disease prediction models for underrepresented linguistic communities. Further developments should include region-specific diseases and further fine-tuning of symptom associations for better diagnostic performance