Abstract:Multi-fidelity (MF) regression often operates in regimes of extreme data imbalance, where the commonly-used Gaussian-process (GP) surrogates struggle with cubic scaling costs and overfit to sparse high-fidelity observations, limiting efficiency and generalization in real-world applications. We introduce FIRE, a training-free MF framework that couples tabular foundation models (TFMs) to perform zero-shot in-context Bayesian inference via a high-fidelity correction model conditioned on the low-fidelity model's posterior predictive distributions. This cross-fidelity information transfer via distributional summaries captures heteroscedastic errors, enabling robust residual learning without model retraining. Across 31 benchmark problems spanning synthetic and real-world tasks (e.g., DrivAerNet, LCBench), FIRE delivers a stronger performance-time trade-off than seven state-of-the-art GP-based or deep learning MF regression methods, ranking highest in accuracy and uncertainty quantification with runtime advantages. Limitations include context window constraints and dependence on the quality of the pre-trained TFM's.