Abstract:Face anti-spoofing has drawn a lot of attention due to the high security requirements in biometric authentication systems. Bringing face biometric to commercial hardware became mostly dependent on developing reliable methods for detecting fake login sessions without specialized sensors. Current CNN-based method perform well on the domains they were trained for, but often show poor generalization on previously unseen datasets. In this paper we describe a method for utilizing unsupervised pretraining for improving performance across multiple datasets without any adaptation, introduce the Entry Antispoofing Dataset for supervised fine-tuning, and propose a multi-class auxiliary classification layer for augmenting the binary classification task of detecting spoofing attempts with explicit interpretable signals. We demonstrate the efficiency of our model by achieving state-of-the-art results on cross-dataset testing on MSU-MFSD, Replay-Attack, and OULU-NPU datasets.
Abstract:Currently in the domain of facial analysis single task approaches for face detection and landmark localization dominate. In this paper we draw attention to multi-task models solving both tasks simultaneously. We present a highly accurate model for face and landmark detection. The method, called MaskFace, extends previous face detection approaches by adding a keypoint prediction head. The new keypoint head adopts ideas of Mask R-CNN by extracting facial features with a RoIAlign layer. The keypoint head adds small computational overhead in the case of few faces in the image while improving the accuracy dramatically. We evaluate MaskFace's performance on a face detection task on the AFW, PASCAL face, FDDB, WIDER FACE datasets and a landmark localization task on the AFLW, 300W datasets. For both tasks MaskFace achieves state-of-the-art results outperforming many of single-task and multi-task models.