Abstract:Modern AI systems often comprise multiple learnable components that can be naturally organized as graphs. A central challenge is the end-to-end training of such systems without restrictive architectural or training assumptions. Such tasks fit the theory and approaches of the collaborative Multi-Agent Reinforcement Learning (MARL) field. We introduce Reinforcement Networks, a general framework for MARL that organizes agents as vertices in a directed acyclic graph (DAG). This structure extends hierarchical RL to arbitrary DAGs, enabling flexible credit assignment and scalable coordination while avoiding strict topologies, fully centralized training, and other limitations of current approaches. We formalize training and inference methods for the Reinforcement Networks framework and connect it to the LevelEnv concept to support reproducible construction, training, and evaluation. We demonstrate the effectiveness of our approach on several collaborative MARL setups by developing several Reinforcement Networks models that achieve improved performance over standard MARL baselines. Beyond empirical gains, Reinforcement Networks unify hierarchical, modular, and graph-structured views of MARL, opening a principled path toward designing and training complex multi-agent systems. We conclude with theoretical and practical directions - richer graph morphologies, compositional curricula, and graph-aware exploration. That positions Reinforcement Networks as a foundation for a new line of research in scalable, structured MARL.




Abstract:Choosing the number of topics $T$ in Latent Dirichlet Allocation (LDA) is a key design decision that strongly affects both the statistical fit and interpretability of topic models. In this work, we formulate the selection of $T$ as a discrete black-box optimization problem, where each function evaluation corresponds to training an LDA model and measuring its validation perplexity. Under a fixed evaluation budget, we compare four families of optimizers: two hand-designed evolutionary methods - Genetic Algorithm (GA) and Evolution Strategy (ES) - and two learned, amortized approaches, Preferential Amortized Black-Box Optimization (PABBO) and Sharpness-Aware Black-Box Optimization (SABBO). Our experiments show that, while GA, ES, PABBO, and SABBO eventually reach a similar band of final perplexity, the amortized optimizers are substantially more sample- and time-efficient. SABBO typically identifies a near-optimal topic number after essentially a single evaluation, and PABBO finds competitive configurations within a few evaluations, whereas GA and ES require almost the full budget to approach the same region.