Abstract:Prompt-based evaluations suggest that large language models (LLMs) perform poorly on time series classification, raising doubts about whether they encode meaningful temporal structure. We show that this conclusion reflects limitations of prompt-based generation rather than the model's representational capacity by directly comparing prompt outputs with linear probes over the same internal representations. While zero-shot prompting performs near chance, linear probes improve average F1 from 0.15-0.26 to 0.61-0.67, often matching or exceeding specialized time series models. Layer-wise analyses further show that class-discriminative time series information emerges in early transformer layers and is amplified by visual and multimodal inputs. Together, these results demonstrate a systematic mismatch between what LLMs internally represent and what prompt-based evaluation reveals, leading current evaluations to underestimate their time series understanding.
Abstract:Recognizing the promise of natural language interfaces to databases, prior studies have emphasized the development of text-to-SQL systems. While substantial progress has been made in this field, existing research has concentrated on generating SQL statements from text queries. The broader challenge, however, lies in inferring new information about the returned data. Our research makes two major contributions to address this gap. First, we introduce a novel Internet-of-Things (IoT) text-to-SQL dataset comprising 10,985 text-SQL pairs and 239,398 rows of network traffic activity. The dataset contains additional query types limited in prior text-to-SQL datasets, notably temporal-related queries. Our dataset is sourced from a smart building's IoT ecosystem exploring sensor read and network traffic data. Second, our dataset allows two-stage processing, where the returned data (network traffic) from a generated SQL can be categorized as malicious or not. Our results show that joint training to query and infer information about the data can improve overall text-to-SQL performance, nearly matching substantially larger models. We also show that current large language models (e.g., GPT3.5) struggle to infer new information about returned data, thus our dataset provides a novel test bed for integrating complex domain-specific reasoning into LLMs.