Abstract:Recent work has explored Large Language Models (LLMs) to overcome the lack of training data for Information Retrieval (IR) tasks. The generalization abilities of these models have enabled the creation of synthetic in-domain data by providing instructions and a few examples on a prompt. InPars and Promptagator have pioneered this approach and both methods have demonstrated the potential of using LLMs as synthetic data generators for IR tasks. This makes them an attractive solution for IR tasks that suffer from a lack of annotated data. However, the reproducibility of these methods was limited, because InPars' training scripts are based on TPUs -- which are not widely accessible -- and because the code for Promptagator was not released and its proprietary LLM is not publicly accessible. To fully realize the potential of these methods and make their impact more widespread in the research community, the resources need to be accessible and easy to reproduce by researchers and practitioners. Our main contribution is a unified toolkit for end-to-end reproducible synthetic data generation research, which includes generation, filtering, training and evaluation. Additionally, we provide an interface to IR libraries widely used by the community and support for GPU. Our toolkit not only reproduces the InPars method and partially reproduces Promptagator, but also provides a plug-and-play functionality allowing the use of different LLMs, exploring filtering methods and finetuning various reranker models on the generated data. We also made available all the synthetic data generated in this work for the 18 different datasets in the BEIR benchmark which took more than 2,000 GPU hours to be generated as well as the reranker models finetuned on the synthetic data. Code and data are available at https://github.com/zetaalphavector/InPars
Abstract:Medical image segmentation is an increasingly popular area of research in medical imaging processing and analysis. However, many researchers who are new to the field struggle with basic concepts. This tutorial paper aims to provide an overview of the fundamental concepts of medical imaging, with a focus on Magnetic Resonance and Computerized Tomography. We will also discuss deep learning algorithms, tools, and frameworks used for segmentation tasks, and suggest best practices for method development and image analysis. Our tutorial includes sample tasks using public data, and accompanying code is available on GitHub (https://github.com/MICLab-Unicamp/Medical-ImagingTutorial). By sharing our insights gained from years of experience in the field and learning from relevant literature, we hope to assist researchers in overcoming the initial challenges they may encounter in this exciting and important area of research.
Abstract:The present study aims to explore the capabilities of Language Models (LMs) in tackling high-stakes multiple-choice tests, represented here by the Exame Nacional do Ensino M\'edio (ENEM), a multidisciplinary entrance examination widely adopted by Brazilian universities. This exam poses challenging tasks for LMs, since its questions may span into multiple fields of knowledge, requiring understanding of information from diverse domains. For instance, a question may require comprehension of both statistics and biology to be solved. This work analyzed responses generated by GPT-3.5 and GPT-4 models for questions presented in the 2009-2017 exams, as well as for questions of the 2022 exam, which were made public after the training of the models was completed. Furthermore, different prompt strategies were tested, including the use of Chain-of-Thought (CoT) prompts to generate explanations for answers. On the 2022 edition, the best-performing model, GPT-4 with CoT, achieved an accuracy of 87%, largely surpassing GPT-3.5 by 11 points. The code and data used on experiments are available at https://github.com/piresramon/gpt-4-enem.
Abstract:This paper reports on a study of cross-lingual information retrieval (CLIR) using the mT5-XXL reranker on the NeuCLIR track of TREC 2022. Perhaps the biggest contribution of this study is the finding that despite the mT5 model being fine-tuned only on query-document pairs of the same language it proved to be viable for CLIR tasks, where query-document pairs are in different languages, even in the presence of suboptimal first-stage retrieval performance. The results of the study show outstanding performance across all tasks and languages, leading to a high number of winning positions. Finally, this study provides valuable insights into the use of mT5 in CLIR tasks and highlights its potential as a viable solution. For reproduction refer to https://github.com/unicamp-dl/NeuCLIR22-mT5
Abstract:Recent work has shown that inducing a large language model (LLM) to generate explanations prior to outputting an answer is an effective strategy to improve performance on a wide range of reasoning tasks. In this work, we show that neural rankers also benefit from explanations. We use LLMs such as GPT-3.5 to augment retrieval datasets with explanations and train a sequence-to-sequence ranking model to output a relevance label and an explanation for a given query-document pair. Our model, dubbed ExaRanker, finetuned on a few thousand examples with synthetic explanations performs on par with models finetuned on 3x more examples without explanations. Furthermore, the ExaRanker model incurs no additional computational cost during ranking and allows explanations to be requested on demand.
Abstract:Recently, InPars introduced a method to efficiently use large language models (LLMs) in information retrieval tasks: via few-shot examples, an LLM is induced to generate relevant queries for documents. These synthetic query-document pairs can then be used to train a retriever. However, InPars and, more recently, Promptagator, rely on proprietary LLMs such as GPT-3 and FLAN to generate such datasets. In this work we introduce InPars-v2, a dataset generator that uses open-source LLMs and existing powerful rerankers to select synthetic query-document pairs for training. A simple BM25 retrieval pipeline followed by a monoT5 reranker finetuned on InPars-v2 data achieves new state-of-the-art results on the BEIR benchmark. To allow researchers to further improve our method, we open source the code, synthetic data, and finetuned models: https://github.com/zetaalphavector/inPars/tree/master/tpu
Abstract:This paper proposes a question-answering system that can answer questions whose supporting evidence is spread over multiple (potentially long) documents. The system, called Visconde, uses a three-step pipeline to perform the task: decompose, retrieve, and aggregate. The first step decomposes the question into simpler questions using a few-shot large language model (LLM). Then, a state-of-the-art search engine is used to retrieve candidate passages from a large collection for each decomposed question. In the final step, we use the LLM in a few-shot setting to aggregate the contents of the passages into the final answer. The system is evaluated on three datasets: IIRC, Qasper, and StrategyQA. Results suggest that current retrievers are the main bottleneck and that readers are already performing at the human level as long as relevant passages are provided. The system is also shown to be more effective when the model is induced to give explanations before answering a question. Code is available at \url{https://github.com/neuralmind-ai/visconde}.
Abstract:Bi-encoders and cross-encoders are widely used in many state-of-the-art retrieval pipelines. In this work we study the generalization ability of these two types of architectures on a wide range of parameter count on both in-domain and out-of-domain scenarios. We find that the number of parameters and early query-document interactions of cross-encoders play a significant role in the generalization ability of retrieval models. Our experiments show that increasing model size results in marginal gains on in-domain test sets, but much larger gains in new domains never seen during fine-tuning. Furthermore, we show that cross-encoders largely outperform bi-encoders of similar size in several tasks. In the BEIR benchmark, our largest cross-encoder surpasses a state-of-the-art bi-encoder by more than 4 average points. Finally, we show that using bi-encoders as first-stage retrievers provides no gains in comparison to a simpler retriever such as BM25 on out-of-domain tasks. The code is available at https://github.com/guilhermemr04/scaling-zero-shot-retrieval.git
Abstract:The widespread availability of search API's (both free and commercial) brings the promise of increased coverage and quality of search results for metasearch engines, while decreasing the maintenance costs of the crawling and indexing infrastructures. However, merging strategies frequently comprise complex pipelines that require careful tuning, which is often overlooked in the literature. In this work, we describe NeuralSearchX, a metasearch engine based on a multi-purpose large reranking model to merge results and highlight sentences. Due to the homogeneity of our architecture, we could focus our optimization efforts on a single component. We compare our system with Microsoft's Biomedical Search and show that our design choices led to a much cost-effective system with competitive QPS while having close to state-of-the-art results on a wide range of public benchmarks. Human evaluation on two domain-specific tasks shows that our retrieval system outperformed Google API by a large margin in terms of nDCG@10 scores. By describing our architecture and implementation in detail, we hope that the community will build on our design choices. The system is available at https://neuralsearchx.nsx.ai.
Abstract:Airway segmentation in computed tomography images can be used to analyze pulmonary diseases, however, manual segmentation is labor intensive and relies on expert knowledge. This manuscript details our contribution to MICCAI's 2022 Airway Tree Modelling challenge, a competition of fully automated methods for airway segmentation. We employed a previously developed deep learning architecture based on a modified EfficientDet (MEDSeg), training from scratch for binary airway segmentation using the provided annotations. Our method achieved 90.72 Dice in internal validation, 95.52 Dice on external validation, and 93.49 Dice in the final test phase, while not being specifically designed or tuned for airway segmentation. Open source code and a pip package for predictions with our model and trained weights are in https://github.com/MICLab-Unicamp/medseg.