Abstract:Patent images are technical drawings that convey information about a patent's innovation. Patent image retrieval systems aim to search in vast collections and retrieve the most relevant images. Despite recent advances in information retrieval, patent images still pose significant challenges due to their technical intricacies and complex semantic information, requiring efficient fine-tuning for domain adaptation. Current methods neglect patents' hierarchical relationships, such as those defined by the Locarno International Classification (LIC) system, which groups broad categories (e.g., "furnishing") into subclasses (e.g., "seats" and "beds") and further into specific patent designs. In this work, we introduce a hierarchical multi-positive contrastive loss that leverages the LIC's taxonomy to induce such relations in the retrieval process. Our approach assigns multiple positive pairs to each patent image within a batch, with varying similarity scores based on the hierarchical taxonomy. Our experimental analysis with various vision and multimodal models on the DeepPatent2 dataset shows that the proposed method enhances the retrieval results. Notably, our method is effective with low-parameter models, which require fewer computational resources and can be deployed on environments with limited hardware.
Abstract:Background: Access to medical care is strongly dependent on resource allocation, such as the geographical distribution of medical facilities. Nevertheless, this data is usually restricted to country official documentation, not available to the public. While some medical facilities' data is accessible as semantic resources on the Web, it is not consistent in its modeling and has yet to be integrated into a complete, open, and specialized repository. This work focuses on generating a comprehensive semantic dataset of medical facilities worldwide containing extensive information about such facilities' geo-location. Results: For this purpose, we collect, align, and link various open-source databases where medical facilities' information may be present. This work allows us to evaluate each data source along various dimensions, such as completeness, correctness, and interlinking with other sources, all critical aspects of current knowledge representation technologies. Conclusions: Our contributions directly benefit stakeholders in the biomedical and health domain (patients, healthcare professionals, companies, regulatory authorities, and researchers), who will now have a better overview of the access to and distribution of medical facilities.