Abstract:Automating tasks in orchards is challenging because of the large amount of variation in the environment and occlusions. One of the challenges is apple pose estimation, where key points, such as the calyx, are often occluded. Recently developed pose estimation methods no longer rely on these key points, but still require them for annotations, making annotating challenging and time-consuming. Due to the abovementioned occlusions, there can be conflicting and missing annotations of the same fruit between different images. Novel 3D reconstruction methods can be used to simplify annotating and enlarge datasets. We propose a novel pipeline consisting of 3D Gaussian Splatting to reconstruct an orchard scene, simplified annotations, automated projection of the annotations to images, and the training and evaluation of a pose estimation method. Using our pipeline, 105 manual annotations were required to obtain 28,191 training labels, a reduction of 99.6%. Experimental results indicated that training with labels of fruits that are $\leq95\%$ occluded resulted in the best performance, with a neutral F1 score of 0.927 on the original images and 0.970 on the rendered images. Adjusting the size of the training dataset had small effects on the model performance in terms of F1 score and pose estimation accuracy. It was found that the least occluded fruits had the best position estimation, which worsened as the fruits became more occluded. It was also found that the tested pose estimation method was unable to correctly learn the orientation estimation of apples.
Abstract:Learning from Demonstration offers great potential for robots to learn to perform agricultural tasks, specifically selective harvesting. One of the challenges is that the target fruit can be oscillating while approaching. Grasping oscillating targets has two requirements: 1) close tracking of the target during the final approach for damage-free grasping, and 2) the complete path should be as short as possible for improved efficiency. We propose a new method called DualLQR. In this method, we use a finite horizon Linear Quadratic Regulator (LQR) on a moving target, without the need of refitting the LQR. To make this possible, we use a dual LQR setup, with an LQR running in two seperate reference frames. Through extensive simulation testing, it was found that the state-of-art method barely meets the required final accuracy without oscillations and drops below the required accuracy with an oscillating target. DualLQR was found to be able to meet the required final accuracy even with high oscillations, with an accuracy increase of 60% for high orientation oscillations. Further testing on a real-world apple grasping task showed that DualLQR was able to successfully grasp oscillating apples, with a success rate of 99%.