Abstract:Anomaly detection is the practice of identifying items or events that do not conform to an expected behavior or do not correlate with other items in a dataset. It has previously been applied to areas such as intrusion detection, system health monitoring, and fraud detection in credit card transactions. In this paper, we describe a new method for detecting anomalous behavior over network performance data, gathered by perfSONAR, using two machine learning algorithms: Boosted Decision Trees (BDT) and Simple Feedforward Neural Network. The effectiveness of each algorithm was evaluated and compared. Both have shown sufficient performance and sensitivity.