Abstract:Clustering algorithms often assume all features contribute equally to the data structure, an assumption that usually fails in high-dimensional or noisy settings. Feature weighting methods can address this, but most require additional parameter tuning. We propose SHARK (Shapley Reweighted $k$-means), a feature-weighted clustering algorithm motivated by the use of Shapley values from cooperative game theory to quantify feature relevance, which requires no additional parameters beyond those in $k$-means. We prove that the $k$-means objective can be decomposed into a sum of per-feature Shapley values, providing an axiomatic foundation for unsupervised feature relevance and reducing Shapley computation from exponential to polynomial time. SHARK iteratively re-weights features by the inverse of their Shapley contribution, emphasising informative dimensions and down-weighting irrelevant ones. Experiments on synthetic and real-world data sets show that SHARK consistently matches or outperforms existing methods, achieving superior robustness and accuracy, particularly in scenarios where noise may be present. Software: https://github.com/rickfawley/shark.