Abstract:The Internet of Medical Things (IoMT) is driving a healthcare revolution but remains vulnerable to cyberattacks such as denial of service, ransomware, data hijacking, and spoofing. These networks comprise resource constrained, heterogeneous devices (e.g., wearable sensors, smart pills, implantables), making traditional centralized Intrusion Detection Systems (IDSs) unsuitable due to response delays, privacy risks, and added vulnerabilities. Centralized IDSs require all sensors to transmit data to a central server, causing delays or network disruptions in dense environments. Running IDSs locally on IoMT devices is often infeasible due to limited computation, and even lightweight IDS components remain at risk if updated models are delayed leaving them exposed to zero-day attacks that threaten patient health and data security. We propose a multi level IoMT IDS framework capable of detecting zero day attacks and distinguishing between known and unknown threats. The first layer (near Edge) filters traffic at a coarse level (attack or not) using meta-learning or One Class Classification (OCC) with the usfAD algorithm. Subsequent layers (far Edge, Cloud) identify attack type and novelty. Experiments on the CICIoMT2024 dataset show 99.77 percentage accuracy and 97.8 percentage F1-score. The first layer detects zero-day attacks with high accuracy without needing new datasets, ensuring strong applicability in IoMT environments. Additionally, the meta-learning approach achieves high.
Abstract:Due to its nature of dynamic, mobility, and wireless data transfer, the Internet of Vehicles (IoV) is prone to various cyber threats, ranging from spoofing and Distributed Denial of Services (DDoS) attacks to malware. To safeguard the IoV ecosystem from intrusions, malicious activities, policy violations, intrusion detection systems (IDS) play a critical role by continuously monitoring and analyzing network traffic to identify and mitigate potential threats in real-time. However, most existing research has focused on developing centralized, machine learning-based IDS systems for IoV without accounting for its inherently distributed nature. Due to intensive computing requirements, these centralized systems often rely on the cloud to detect cyber threats, increasing delay of system response. On the other hand, edge nodes typically lack the necessary resources to train and deploy complex machine learning algorithms. To address this issue, this paper proposes an effective hierarchical classification framework tailored for IoV networks. Hierarchical classification allows classifiers to be trained and tested at different levels, enabling edge nodes to detect specific types of attacks independently. With this approach, edge nodes can conduct targeted attack detection while leveraging cloud nodes for comprehensive threat analysis and support. Given the resource constraints of edge nodes, we have employed the Boruta feature selection method to reduce data dimensionality, optimizing processing efficiency. To evaluate our proposed framework, we utilize the latest IoV security dataset CIC-IoV2024, achieving promising results that demonstrate the feasibility and effectiveness of our models in securing IoV networks.