Abstract:Decentralized Federated Learning (DFL) has emerged as a privacy-preserving machine learning paradigm that enables collaborative training among users without relying on a central server. However, its performance often degrades significantly due to limited connectivity and data heterogeneity. As we move toward the next generation of wireless networks, mobility is increasingly embedded in many real-world applications. The user mobility, either natural or induced, enables clients to act as relays or bridges, thus enhancing information flow in sparse networks; however, its impact on DFL has been largely overlooked despite its potential. In this work, we systematically investigate the role of mobility in improving DFL performance. We first establish the convergence of DFL in sparse networks under user mobility and theoretically demonstrate that even random movement of a fraction of users can significantly boost performance. Building upon this insight, we propose a DFL framework that utilizes mobile users with induced mobility patterns, allowing them to exploit the knowledge of data distribution to determine their trajectories to enhance information propagation through the network. Through extensive experiments, we empirically confirm our theoretical findings, validate the superiority of our approach over baselines, and provide a comprehensive analysis of how various network parameters influence DFL performance in mobile networks.
Abstract:Decentralized federated learning (DFL) has attracted significant attention due to its scalability and independence from a central server. In practice, some participating clients can be mobile, yet the impact of user mobility on DFL performance remains largely unexplored, despite its potential to facilitate communication and model convergence. In this work, we demonstrate that introducing a small fraction of mobile clients, even with random movement, can significantly improve the accuracy of DFL by facilitating information flow. To further enhance performance, we propose novel distribution-aware mobility patterns, where mobile clients strategically navigate the network, leveraging knowledge of data distributions and static client locations. The proposed moving strategies mitigate the impact of data heterogeneity and boost learning convergence. Extensive experiments validate the effectiveness of induced mobility in DFL and demonstrate the superiority of our proposed mobility patterns over random movement.