Abstract:Metareasoning, a branch of AI, focuses on reasoning about reasons. It has the potential to enhance robots' decision-making processes in unexpected situations. However, the concept has largely been confined to theoretical discussions and case-by-case investigations, lacking general and practical solutions when the Value of Computation (VoC) is undefined, which is common in unexpected situations. In this work, we propose a revised meta-reasoning framework that significantly improves the scalability of the original approach in unexpected situations. This is achieved by incorporating semantic attention maps and unsupervised 'attention' updates into the metareasoning processes. To accommodate environmental dynamics, 'lines of thought' are used to bridge context-specific objects with abstracted attentions, while meta-information is monitored and controlled at the meta-level for effective reasoning. The practicality of the proposed approach is demonstrated through cloud robots deployed in real-world scenarios, showing improved performance and robustness.