Abstract:Fine-grained action localization in untrimmed sports videos presents a significant challenge due to rapid and subtle motion transitions over short durations. Existing supervised and weakly supervised solutions often rely on extensive annotated datasets and high-capacity models, making them computationally intensive and less adaptable to real-world scenarios. In this work, we introduce a lightweight and unsupervised skeleton-based action localization pipeline that leverages spatio-temporal graph neural representations. Our approach pre-trains an Attention-based Spatio-Temporal Graph Convolutional Network (ASTGCN) on a pose-sequence denoising task with blockwise partitions, enabling it to learn intrinsic motion dynamics without any manual labeling. At inference, we define a novel Action Dynamics Metric (ADM), computed directly from low-dimensional ASTGCN embeddings, which detects motion boundaries by identifying inflection points in its curvature profile. Our method achieves a mean Average Precision (mAP) of 82.66% and average localization latency of 29.09 ms on the DSV Diving dataset, matching state-of-the-art supervised performance while maintaining computational efficiency. Furthermore, it generalizes robustly to unseen, in-the-wild diving footage without retraining, demonstrating its practical applicability for lightweight, real-time action analysis systems in embedded or dynamic environments.
Abstract:Although Deep Convolutional Neural Networks trained with strong pixel-level annotations have significantly pushed the performance in semantic segmentation, annotation efforts required for the creation of training data remains a roadblock for further improvements. We show that augmentation of the weakly annotated training dataset with synthetic images minimizes both the annotation efforts and also the cost of capturing images with sufficient variety. Evaluation on the PASCAL 2012 validation dataset shows an increase in mean IOU from 52.80% to 55.47% by adding just 100 synthetic images per object class. Our approach is thus a promising solution to the problems of annotation and dataset collection.