Abstract:Unmanned aerial vehicles (UAVs), commonly known as drones, are increasingly used across diverse domains, including logistics, agriculture, surveillance, and defense. While these systems provide numerous benefits, their misuse raises safety and security concerns, making effective detection mechanisms essential. Acoustic sensing offers a low-cost and non-intrusive alternative to vision or radar-based detection, as drone propellers generate distinctive sound patterns. This study introduces AUDRON (AUdio-based Drone Recognition Network), a hybrid deep learning framework for drone sound detection, employing a combination of Mel-Frequency Cepstral Coefficients (MFCC), Short-Time Fourier Transform (STFT) spectrograms processed with convolutional neural networks (CNNs), recurrent layers for temporal modeling, and autoencoder-based representations. Feature-level fusion integrates complementary information before classification. Experimental evaluation demonstrates that AUDRON effectively differentiates drone acoustic signatures from background noise, achieving high accuracy while maintaining generalizability across varying conditions. AUDRON achieves 98.51 percent and 97.11 percent accuracy in binary and multiclass classification. The results highlight the advantage of combining multiple feature representations with deep learning for reliable acoustic drone detection, suggesting the framework's potential for deployment in security and surveillance applications where visual or radar sensing may be limited.
Abstract:Speech Emotion Recognition (SER) systems often degrade in performance when exposed to the unpredictable acoustic interference found in real-world environments. Additionally, the opacity of deep learning models hinders their adoption in trust-sensitive applications. To bridge this gap, we propose a Hybrid Transformer-CNN framework that unifies the contextual modeling of Wav2Vec 2.0 with the spectral stability of 1D-Convolutional Neural Networks. Our dual-stream architecture processes raw waveforms to capture long-range temporal dependencies while simultaneously extracting noise-resistant spectral features (MFCC, ZCR, RMSE) via a custom Attentive Temporal Pooling mechanism. We conducted extensive validation across four diverse benchmark datasets: RAVDESS, TESS, SAVEE, and CREMA-D. To rigorously test robustness, we subjected the model to non-stationary acoustic interference using real-world noise profiles from the SAS-KIIT dataset. The proposed framework demonstrates superior generalization and state-of-the-art accuracy across all datasets, significantly outperforming single-branch baselines under realistic environmental interference. Furthermore, we address the ``black-box" problem by integrating SHAP and Score-CAM into the evaluation pipeline. These tools provide granular visual explanations, revealing how the model strategically shifts attention between temporal and spectral cues to maintain reliability in the presence of complex environmental noise.
Abstract:An efficient system of a queue control and regulation in public spaces is very important in order to avoid the traffic jams and to improve the customer satisfaction. This article offers a detailed road map based on a merger of intelligent systems and creating an efficient systems of queues in public places. Through the utilization of different technologies i.e. computer vision, machine learning algorithms, deep learning our system provide accurate information about the place is crowded or not and the necessary efforts to be taken.