Abstract:Breast ultrasound (BUS) segmentation provides lesion boundaries essential for computer-aided diagnosis and treatment planning. While promptable methods can improve segmentation performance and tumor delineation when text or spatial prompts are available, many public BUS datasets lack reliable metadata or reports, constraining training to small multimodal subsets and reducing robustness. We propose NullBUS, a multimodal mixed-supervision framework that learns from images with and without prompts in a single model. To handle missing text, we introduce nullable prompts, implemented as learnable null embeddings with presence masks, enabling fallback to image-only evidence when metadata are absent and the use of text when present. Evaluated on a unified pool of three public BUS datasets, NullBUS achieves a mean IoU of 0.8568 and a mean Dice of 0.9103, demonstrating state-of-the-art performance under mixed prompt availability.
Abstract:Background: Precise breast ultrasound (BUS) segmentation supports reliable measurement, quantitative analysis, and downstream classification, yet remains difficult for small or low-contrast lesions with fuzzy margins and speckle noise. Text prompts can add clinical context, but directly applying weakly localized text-image cues (e.g., CAM/CLIP-derived signals) tends to produce coarse, blob-like responses that smear boundaries unless additional mechanisms recover fine edges. Methods: We propose XBusNet, a novel dual-prompt, dual-branch multimodal model that combines image features with clinically grounded text. A global pathway based on a CLIP Vision Transformer encodes whole-image semantics conditioned on lesion size and location, while a local U-Net pathway emphasizes precise boundaries and is modulated by prompts that describe shape, margin, and Breast Imaging Reporting and Data System (BI-RADS) terms. Prompts are assembled automatically from structured metadata, requiring no manual clicks. We evaluate on the Breast Lesions USG (BLU) dataset using five-fold cross-validation. Primary metrics are Dice and Intersection over Union (IoU); we also conduct size-stratified analyses and ablations to assess the roles of the global and local paths and the text-driven modulation. Results: XBusNet achieves state-of-the-art performance on BLU, with mean Dice of 0.8765 and IoU of 0.8149, outperforming six strong baselines. Small lesions show the largest gains, with fewer missed regions and fewer spurious activations. Ablation studies show complementary contributions of global context, local boundary modeling, and prompt-based modulation. Conclusions: A dual-prompt, dual-branch multimodal design that merges global semantics with local precision yields accurate BUS segmentation masks and improves robustness for small, low-contrast lesions.