Abstract:With advances in large language models (LLMs), new opportunities have emerged to develop tools that support the digital hardware design process. In this work, we explore how LLMs can assist with explaining the root cause of design issues and bugs that are revealed during synthesis and simulation, a necessary milestone on the pathway towards widespread use of LLMs in the hardware design process and for hardware security analysis. We find promising results: for our corpus of 34 different buggy scenarios, OpenAI's o3-mini reasoning model reached a correct determination 100% of the time under pass@5 scoring, with other state of the art models and configurations usually achieving more than 80% performance and more than 90% when assisted with retrieval-augmented generation.