Abstract:Policy targets evolve faster than the Couple Model Intercomparison Project cycles, complicating adaptation and mitigation planning that must often contend with outdated projections. Climate model output emulators address this gap by offering inexpensive surrogates that can rapidly explore alternative futures while staying close to Earth System Model (ESM) behavior. We focus on emulators designed to provide inputs to impact models. Using monthly ESM fields of near-surface temperature, precipitation, relative humidity, and wind speed, we show that deep generative models have the potential to model jointly the distribution of variables relevant for impacts. The specific model we propose uses score-based diffusion on a spherical mesh and runs on a single mid-range graphical processing unit. We introduce a thorough suite of diagnostics to compare emulator outputs with their parent ESMs, including their probability densities, cross-variable correlations, time of emergence, or tail behavior. We evaluate performance across three distinct ESMs in both pre-industrial and forced regimes. The results show that the emulator produces distributions that closely match the ESM outputs and captures key forced responses. They also reveal important failure cases, notably for variables with a strong regime shift in the seasonal cycle. Although not a perfect match to the ESM, the inaccuracies of the emulator are small relative to the scale of internal variability in ESM projections. We therefore argue that it shows potential to be useful in supporting impact assessment. We discuss priorities for future development toward daily resolution, finer spatial scales, and bias-aware training. Code is made available at https://github.com/shahineb/climemu.
Abstract:Full-complexity Earth system models (ESMs) are computationally very expensive, limiting their use in exploring the climate outcomes of multiple emission pathways. More efficient emulators that approximate ESMs can directly map emissions onto climate outcomes, and benchmarks are being used to evaluate their accuracy on standardized tasks and datasets. We investigate a popular benchmark in data-driven climate emulation, ClimateBench, on which deep learning-based emulators are currently achieving the best performance. We implement a linear regression-based emulator, akin to pattern scaling, and find that it outperforms the incumbent 100M-parameter deep learning foundation model, ClimaX, on 3 out of 4 regionally-resolved surface-level climate variables. While emulating surface temperature is expected to be predominantly linear, this result is surprising for emulating precipitation. We identify that this outcome is a result of high levels of internal variability in the benchmark targets. To address internal variability, we update the benchmark targets with ensemble averages from the MPI-ESM1.2-LR model that contain 50 instead of 3 climate simulations per emission pathway. Using the new targets, we show that linear pattern scaling continues to be more accurate on temperature, but can be outperformed by a deep learning-based model for emulating precipitation. We publish our code, data, and an interactive tutorial at github.com/blutjens/climate-emulator.