Abstract:Indoor positioning systems (IPSs) are increasingly vital for location-based services in complex multi-storey environments. This study proposes a novel graph-based approach for floor separation using Wi-Fi fingerprint trajectories, addressing the challenge of vertical localization in indoor settings. We construct a graph where nodes represent Wi-Fi fingerprints, and edges are weighted by signal similarity and contextual transitions. Node2Vec is employed to generate low-dimensional embeddings, which are subsequently clustered using K-means to identify distinct floors. Evaluated on the Huawei University Challenge 2021 dataset, our method outperforms traditional community detection algorithms, achieving an accuracy of 68.97%, an F1- score of 61.99%, and an Adjusted Rand Index of 57.19%. By publicly releasing the preprocessed dataset and implementation code, this work contributes to advancing research in indoor positioning. The proposed approach demonstrates robustness to signal noise and architectural complexities, offering a scalable solution for floor-level localization.
Abstract:In recent years WiFi became the primary source of information to locate a person or device indoor. Collecting RSSI values as reference measurements with known positions, known as WiFi fingerprinting, is commonly used in various positioning methods and algorithms that appear in literature. However, measuring the spatial distance between given set of WiFi fingerprints is heavily affected by the selection of the signal distance function used to model signal space as geospatial distance. In this study, the authors proposed utilization of machine learning to improve the estimation of geospatial distance between fingerprints. This research examined data collected from 13 different open datasets to provide a broad representation aiming for general model that can be used in any indoor environment. The proposed novel approach extracted data features by examining a set of commonly used signal distance metrics via feature selection process that includes feature analysis and genetic algorithm. To demonstrate that the output of this research is venue independent, all models were tested on datasets previously excluded during the training and validation phase. Finally, various machine learning algorithms were compared using wide variety of evaluation metrics including ability to scale out the test bed to real world unsolicited datasets.