Abstract:We introduce VULCA-Bench, a multicultural art-critique benchmark for evaluating Vision-Language Models' (VLMs) cultural understanding beyond surface-level visual perception. Existing VLM benchmarks predominantly measure L1-L2 capabilities (object recognition, scene description, and factual question answering) while under-evaluate higher-order cultural interpretation. VULCA-Bench contains 7,410 matched image-critique pairs spanning eight cultural traditions, with Chinese-English bilingual coverage. We operationalise cultural understanding using a five-layer framework (L1-L5, from Visual Perception to Philosophical Aesthetics), instantiated as 225 culture-specific dimensions and supported by expert-written bilingual critiques. Our pilot results indicate that higher-layer reasoning (L3-L5) is consistently more challenging than visual and technical analysis (L1-L2). The dataset, evaluation scripts, and annotation tools are available under CC BY 4.0 in the supplementary materials.
Abstract:Vision-Language Models (VLMs) excel at visual perception, yet their ability to interpret cultural meaning in art remains under-validated. We present a tri-tier evaluation framework for cross-cultural art-critique assessment: Tier I computes automated coverage and risk indicators offline; Tier II applies rubric-based scoring using a single primary judge across five dimensions; and Tier III calibrates the Tier II aggregate score to human ratings via isotonic regression, yielding a 5.2% reduction in MAE on a 152-sample held-out set. The framework outputs a calibrated cultural-understanding score for model selection and cultural-gap diagnosis, together with dimension-level diagnostics and risk indicators. We evaluate 15 VLMs on 294 expert anchors spanning six cultural traditions. Key findings are that (i) automated metrics are unreliable proxies for cultural depth, (ii) Western samples score higher than non-Western samples under our sampling and rubric, and (iii) cross-judge scale mismatch makes naive score averaging unreliable, motivating a single primary judge with explicit calibration. Dataset and code are available in the supplementary materials.