Abstract:Estimating long-term treatment effects has a wide range of applications in various domains. A key feature in this context is that collecting long-term outcomes typically involves a multi-stage process and is subject to monotone missing, where individuals missing at an earlier stage remain missing at subsequent stages. Despite its prevalence, monotone missing has been rarely explored in previous studies on estimating long-term treatment effects. In this paper, we address this gap by introducing the sequential missingness assumption for identification. We propose three novel estimation methods, including inverse probability weighting, sequential regression imputation, and sequential marginal structural model (SeqMSM). Considering that the SeqMSM method may suffer from high variance due to severe data sparsity caused by monotone missing, we further propose a novel balancing-enhanced approach, BalanceNet, to improve the stability and accuracy of the estimation methods. Extensive experiments on two widely used benchmark datasets demonstrate the effectiveness of our proposed methods.
Abstract:Transfer learning of prediction models has been extensively studied, while the corresponding policy learning approaches are rarely discussed. In this paper, we propose principled approaches for learning the optimal policy in the target domain by leveraging two datasets: one with full information from the source domain and the other from the target domain with only covariates. First, under the setting of covariate shift, we formulate the problem from a perspective of causality and present the identifiability assumptions for the reward induced by a given policy. Then, we derive the efficient influence function and the semiparametric efficiency bound for the reward. Based on this, we construct a doubly robust and semiparametric efficient estimator for the reward and then learn the optimal policy by optimizing the estimated reward. Moreover, we theoretically analyze the bias and the generalization error bound for the learned policy. Furthermore, in the presence of both covariate and concept shifts, we propose a novel sensitivity analysis method to evaluate the robustness of the proposed policy learning approach. Extensive experiments demonstrate that the approach not only estimates the reward more accurately but also yields a policy that closely approximates the theoretically optimal policy.