Abstract:Phase change plays a critical role in thermal management systems, yet quantitative characterization of multiphase heat transfer remains limited by the challenges of measuring temperature fields in chaotic, rapidly evolving flow regimes. While computational methods offer spatiotemporal resolution in idealized cases, replicating complex experimental conditions remains prohibitively difficult. Here, we present a data-driven framework that leverages a conditional generative adversarial network (CGAN) to infer temperature fields from geometric phase contours in a canonical pool boiling configuration where advanced data collection techniques are restricted. Using high-speed imaging data and simulation-informed training, our model demonstrates the ability to reconstruct temperature fields with errors below 6%. We further show that standard data augmentation strategies are effective in enhancing both accuracy and physical plausibility of the predicted maps across both simulation and experimental datasets when precise physical constraints are not applicable. Our results highlight the potential of deep generative models to bridge the gap between observable multiphase phenomena and underlying thermal transport, offering a powerful approach to augment and interpret experimental measurements in complex two-phase systems.