Abstract:In this paper, we refine the Berry-Esseen bounds for the multivariate normal approximation of Polyak-Ruppert averaged iterates arising from the linear stochastic approximation (LSA) algorithm with decreasing step size. We consider the normal approximation by the Gaussian distribution with covariance matrix predicted by the Polyak-Juditsky central limit theorem and establish the rate up to order $n^{-1/3}$ in convex distance, where $n$ is the number of samples used in the algorithm. We also prove a non-asymptotic validity of the multiplier bootstrap procedure for approximating the distribution of the rescaled error of the averaged LSA estimator. We establish approximation rates of order up to $1/\sqrt{n}$ for the latter distribution, which significantly improves upon the previous results obtained by Samsonov et al. (2024).
Abstract:In this paper, we obtain the Berry-Esseen bound for multivariate normal approximation for the Polyak-Ruppert averaged iterates of the linear stochastic approximation (LSA) algorithm with decreasing step size. Our findings reveal that the fastest rate of normal approximation is achieved when setting the most aggressive step size $\alpha_{k} \asymp k^{-1/2}$. Moreover, we prove the non-asymptotic validity of the confidence intervals for parameter estimation with LSA based on multiplier bootstrap. This procedure updates the LSA estimate together with a set of randomly perturbed LSA estimates upon the arrival of subsequent observations. We illustrate our findings in the setting of temporal difference learning with linear function approximation.