Abstract:Recently the use of Noisy Intermediate Scale Quantum (NISQ) devices for machine learning tasks has been proposed. The propositions often perform poorly due to various restrictions. However, the quantum devices should perform well in sampling tasks. Thus, we recall theory of sampling-based approach to machine learning and propose a quantum sampling based classifier. Namely, we use randomized feature map approach. We propose a method of quantum sampling based on random quantum circuits with parametrized rotations distribution. We obtain simple to use method with intuitive hyper-parameters that performs at least equally well as top out-of-the-box classical methods. In short we obtain a competitive quantum classifier with crucial component being quantum sampling -- a promising task for quantum supremacy.
Abstract:In this work we examine recently proposed distance-based classification method designed for near-term quantum processing units with limited resources. We further study possibilities to reduce the quantum resources without any efficiency decrease. We show that only a part of the information undergoes coherent evolution and this fact allows us to introduce an algorithm with significantly reduced quantum memory size. Additionally, considering only partial information at a time, we propose a classification protocol with information distributed among a number of agents. Finally, we show that the information evolution during a measurement can lead to a better solution and that accuracy of the algorithm can be improved by harnessing the state after the final measurement.
Abstract:We present a novel quantum algorithm for classification of images. The algorithm is constructed using principal component analysis and von Neuman quantum measurements. In order to apply the algorithm we present a new quantum representation of grayscale images.