Abstract:Cloud-based multilingual translation services like Google Translate and Microsoft Translator achieve state-of-the-art translation capabilities. These services inherently use large multilingual language models such as GRU, LSTM, BERT, GPT, T5, or similar encoder-decoder architectures with attention mechanisms as the backbone. Also, new age natural language systems, for instance ChatGPT and DeepSeek, have established huge potential in multiple tasks in natural language processing. At the same time, they also possess outstanding multilingual translation capabilities. However, these models use the classical computing realm as a backend. QEDACVC (Quantum Encoder Decoder Attention-based Convolutional Variational Circuits) is an alternate solution that explores the quantum computing realm instead of the classical computing realm to study and demonstrate multilingual machine translation. QEDACVC introduces the quantum encoder-decoder architecture that simulates and runs on quantum computing hardware via quantum convolution, quantum pooling, quantum variational circuit, and quantum attention as software alterations. QEDACVC achieves an Accuracy of 82% when trained on the OPUS dataset for English, French, German, and Hindi corpora for multilingual translations.
Abstract:Performance of large language models (LLMs) on medical tasks has traditionally been evaluated using multiple choice question benchmarks. However, such benchmarks are highly constrained, saturated with repeated impressive performance by LLMs, and have an unclear relationship to performance in real clinical scenarios. Clinical reasoning, the process by which physicians employ critical thinking to gather and synthesize clinical data to diagnose and manage medical problems, remains an attractive benchmark for model performance. Prior LLMs have shown promise in outperforming clinicians in routine and complex diagnostic scenarios. We sought to evaluate OpenAI's o1-preview model, a model developed to increase run-time via chain of thought processes prior to generating a response. We characterize the performance of o1-preview with five experiments including differential diagnosis generation, display of diagnostic reasoning, triage differential diagnosis, probabilistic reasoning, and management reasoning, adjudicated by physician experts with validated psychometrics. Our primary outcome was comparison of the o1-preview output to identical prior experiments that have historical human controls and benchmarks of previous LLMs. Significant improvements were observed with differential diagnosis generation and quality of diagnostic and management reasoning. No improvements were observed with probabilistic reasoning or triage differential diagnosis. This study highlights o1-preview's ability to perform strongly on tasks that require complex critical thinking such as diagnosis and management while its performance on probabilistic reasoning tasks was similar to past models. New robust benchmarks and scalable evaluation of LLM capabilities compared to human physicians are needed along with trials evaluating AI in real clinical settings.