Abstract:We present JEL, a novel computationally efficient end-to-end multi-neural network based entity linking model, which beats current state-of-art model. Knowledge Graphs have emerged as a compelling abstraction for capturing critical relationships among the entities of interest and integrating data from multiple heterogeneous sources. A core problem in leveraging a knowledge graph is linking its entities to the mentions (e.g., people, company names) that are encountered in textual sources (e.g., news, blogs., etc) correctly, since there are thousands of entities to consider for each mention. This task of linking mentions and entities is referred as Entity Linking (EL). It is a fundamental task in natural language processing and is beneficial in various uses cases, such as building a New Analytics platform. News Analytics, in JPMorgan, is an essential task that benefits multiple groups across the firm. According to a survey conducted by the Innovation Digital team 1 , around 25 teams across the firm are actively looking for news analytics solutions, and more than \$2 million is being spent annually on external vendor costs. Entity linking is critical for bridging unstructured news text with knowledge graphs, enabling users access to vast amounts of curated data in a knowledge graph and dramatically facilitating their daily work.