Abstract:Machine Learning, particularly Generative Adversarial Networks (GANs), has revolutionised Super Resolution (SR). However, generated images often lack physical meaningfulness, which is essential for scientific applications. Our approach, PC-SRGAN, enhances image resolution while ensuring physical consistency for interpretable simulations. PC-SRGAN significantly improves both the Peak Signal-to-Noise Ratio and the Structural Similarity Index Measure compared to conventional methods, even with limited training data (e.g., only 13% of training data required for SRGAN). Beyond SR, PC-SRGAN augments physically meaningful machine learning, incorporating numerically justified time integrators and advanced quality metrics. These advancements promise reliable and causal machine-learning models in scientific domains. A significant advantage of PC-SRGAN over conventional SR techniques is its physical consistency, which makes it a viable surrogate model for time-dependent problems. PC-SRGAN advances scientific machine learning, offering improved accuracy and efficiency for image processing, enhanced process understanding, and broader applications to scientific research. The source codes and data will be made publicly available at https://github.com/hasan-rakibul/PC-SRGAN upon acceptance of this paper.
Abstract:Machine learning has become a powerful tool for enhancing data assimilation. While supervised learning remains the standard method, reinforcement learning (RL) offers unique advantages through its sequential decision-making framework, which naturally fits the iterative nature of data assimilation by dynamically balancing model forecasts with observations. We develop RL-DAUNCE, a new RL-based method that enhances data assimilation with physical constraints through three key aspects. First, RL-DAUNCE inherits the computational efficiency of machine learning while it uniquely structures its agents to mirror ensemble members in conventional data assimilation methods. Second, RL-DAUNCE emphasizes uncertainty quantification by advancing multiple ensemble members, moving beyond simple mean-state optimization. Third, RL-DAUNCE's ensemble-as-agents design facilitates the enforcement of physical constraints during the assimilation process, which is crucial to improving the state estimation and subsequent forecasting. A primal-dual optimization strategy is developed to enforce constraints, which dynamically penalizes the reward function to ensure constraint satisfaction throughout the learning process. Also, state variable bounds are respected by constraining the RL action space. Together, these features ensure physical consistency without sacrificing efficiency. RL-DAUNCE is applied to the Madden-Julian Oscillation, an intermittent atmospheric phenomenon characterized by strongly non-Gaussian features and multiple physical constraints. RL-DAUNCE outperforms the standard ensemble Kalman filter (EnKF), which fails catastrophically due to the violation of physical constraints. Notably, RL-DAUNCE matches the performance of constrained EnKF, particularly in recovering intermittent signals, capturing extreme events, and quantifying uncertainties, while requiring substantially less computational effort.
Abstract:In this work, we further develop the Physics-informed Spectral Learning (PiSL) by Espath et al. \cite{Esp21} based on a discrete $L^2$ projection to solve the discrete Hodge--Helmholtz decomposition from sparse data. Within this physics-informed statistical learning framework, we adaptively build a sparse set of Fourier basis functions with corresponding coefficients by solving a sequence of minimization problems where the set of basis functions is augmented greedily at each optimization problem. Moreover, our PiSL computational framework enjoys spectral (exponential) convergence. We regularize the minimization problems with the seminorm of the fractional Sobolev space in a Tikhonov fashion. In the Fourier setting, the divergence- and curl-free constraints become a finite set of linear algebraic equations. The proposed computational framework combines supervised and unsupervised learning techniques in that we use data concomitantly with the projection onto divergence- and curl-free spaces. We assess the capabilities of our method in various numerical examples including the `Storm of the Century' with satellite data from 1993.