Abstract:Access to high-quality medical data is often restricted due to privacy concerns, posing significant challenges for training artificial intelligence (AI) algorithms within Electronic Health Record (EHR) applications. In this study, prompt engineering with the GPT-4 API was employed to generate high-quality synthetic datasets aimed at overcoming this limitation. The generated data encompassed a comprehensive array of patient admission information, including healthcare provider details, hospital departments, wards, bed assignments, patient demographics, emergency contacts, vital signs, immunizations, allergies, medical histories, appointments, hospital visits, laboratory tests, diagnoses, treatment plans, medications, clinical notes, visit logs, discharge summaries, and referrals. To ensure data quality and integrity, advanced validation techniques were implemented utilizing models such as BERT's Next Sentence Prediction for sentence coherence, GPT-2 for overall plausibility, RoBERTa for logical consistency, autoencoders for anomaly detection, and conducted diversity analysis. Synthetic data that met all validation criteria were integrated into a comprehensive PostgreSQL database, serving as the data management system for the EHR application. This approach demonstrates that leveraging generative AI models with rigorous validation can effectively produce high-quality synthetic medical data, facilitating the training of AI algorithms while addressing privacy concerns associated with real patient data.
Abstract:Cancer remains a leading global health challenge and a major cause of mortality. This study leverages machine learning (ML) to predict the survivability of cancer patients with metastatic patterns using the comprehensive MSK-MET dataset, which includes genomic and clinical data from 25,775 patients across 27 cancer types. We evaluated five ML models-XGBoost, Na\"ive Bayes, Decision Tree, Logistic Regression, and Random Fores using hyperparameter tuning and grid search. XGBoost emerged as the best performer with an area under the curve (AUC) of 0.82. To enhance model interpretability, SHapley Additive exPlanations (SHAP) were applied, revealing key predictors such as metastatic site count, tumor mutation burden, fraction of genome altered, and organ-specific metastases. Further survival analysis using Kaplan-Meier curves, Cox Proportional Hazards models, and XGBoost Survival Analysis identified significant predictors of patient outcomes, offering actionable insights for clinicians. These findings could aid in personalized prognosis and treatment planning, ultimately improving patient care.