Abstract:Yes! In the present-day documenting and preserving endangered languages, the application of Large Language Models (LLMs) presents a promising approach. This paper explores how LLMs, particularly through in-context learning, can assist in generating grammatical information for low-resource languages with limited amount of data. We takes Moklen as a case study to evaluate the efficacy of LLMs in producing coherent grammatical rules and lexical entries using only bilingual dictionaries and parallel sentences of the unknown language without building the model from scratch. Our methodology involves organising the existing linguistic data and prompting to efficiently enable to generate formal XLE grammar. Our results demonstrate that LLMs can successfully capture key grammatical structures and lexical information, although challenges such as the potential for English grammatical biases remain. This study highlights the potential of LLMs to enhance language documentation efforts, providing a cost-effective solution for generating linguistic data and contributing to the preservation of endangered languages.
Abstract:Human-Centric NLP often claims to prioritise human needs and values, yet many implementations reveal an underlying AI-centric focus. Through an analysis of case studies in language modelling, behavioural testing, and multi-modal alignment, this study identifies a significant gap between the ideas of human-centricity and actual practices. Key issues include misalignment with human-centred design principles, the reduction of human factors to mere benchmarks, and insufficient consideration of real-world impacts. The discussion explores whether Human-Centric NLP embodies true human-centred design, emphasising the need for interdisciplinary collaboration and ethical considerations. The paper advocates for a redefinition of Human-Centric NLP, urging a broader focus on real-world utility and societal implications to ensure that language technologies genuinely serve and empower users.