Abstract:The localization of moving robots depends on the availability of good features from the environment. Sensor systems like Lidar are popular, but unique features can also be extracted from images of the ground. This work presents the Keypoint Localization Framework (KOALA), which utilizes deep neural networks that extract sufficient features from an industrial floor for accurate localization without having readable markers. For this purpose, we use a floor covering that can be produced as cheaply as common industrial floors. Although we do not use any filtering, prior, or temporal information, we can estimate our position in 75.7 % of all images with a mean position error of 2 cm and a rotation error of 2.4 %. Thus, the robot kidnapping problem can be solved with high precision in every frame, even while the robot is moving. Furthermore, we show that our framework with our detector and descriptor combination is able to outperform comparable approaches.