ICube
Abstract:The dramatic increase of complex, multi-step, and rapidly evolving attacks in dynamic networks involves advanced cyber-threat detectors. The GPML (Graph Processing for Machine Learning) library addresses this need by transforming raw network traffic traces into graph representations, enabling advanced insights into network behaviors. The library provides tools to detect anomalies in interaction and community shifts in dynamic networks. GPML supports community and spectral metrics extraction, enhancing both real-time detection and historical forensics analysis. This library supports modern cybersecurity challenges with a robust, graph-based approach.
Abstract:From automated intrusion testing to discovery of zero-day attacks before software launch, agentic AI calls for great promises in security engineering. This strong capability is bound with a similar threat: the security and research community must build up its models before the approach is leveraged by malicious actors for cybercrime. We therefore propose and evaluate RedTeamLLM, an integrated architecture with a comprehensive security model for automatization of pentest tasks. RedTeamLLM follows three key steps: summarizing, reasoning and act, which embed its operational capacity. This novel framework addresses four open challenges: plan correction, memory management, context window constraint, and generality vs. specialization. Evaluation is performed through the automated resolution of a range of entry-level, but not trivial, CTF challenges. The contribution of the reasoning capability of our agentic AI framework is specifically evaluated.
Abstract:The advent of the Big Data hype and the consistent recollection of event logs and real-time data from sensors, monitoring software and machine configuration has generated a huge amount of time-varying data in about every sector of the industry. Rule-based processing of such data has ceased to be relevant in many scenarios where anomaly detection and pattern mining have to be entirely accomplished by the machine. Since the early 2000s, the de-facto standard for representing time series has been the Symbolic Aggregate approXimation (SAX).In this document, we present a few algorithms using this representation for anomaly detection and motif discovery, also known as pattern mining, in such data. We propose a benchmark of anomaly detection algorithms using data from Cloud monitoring software.