Abstract:The approximation of mixed Nash equilibria (MNE) for zero-sum games with mean-field interacting players has recently raised much interest in machine learning. In this paper we propose a mean-field gradient descent dynamics for finding the MNE of zero-sum games involving $K$ players with $K\geq 2$. The evolution of the players' strategy distributions follows coupled mean-field gradient descent flows with momentum, incorporating an exponentially discounted time-averaging of gradients. First, in the case of a fixed entropic regularization, we prove an exponential convergence rate for the mean-field dynamics to the mixed Nash equilibrium with respect to the total variation metric. This improves a previous polynomial convergence rate for a similar time-averaged dynamics with different averaging factors. Moreover, unlike previous two-scale approaches for finding the MNE, our approach treats all player types on the same time scale. We also show that with a suitable choice of decreasing temperature, a simulated annealing version of the mean-field dynamics converges to an MNE of the initial unregularized problem.
Abstract:Contraction in Wasserstein 1-distance with explicit rates is established for generalized Hamiltonian Monte Carlo with stochastic gradients under possibly nonconvex conditions. The algorithms considered include splitting schemes of kinetic Langevin diffusion. As consequence, quantitative Gaussian concentration bounds are provided for empirical averages. Convergence in Wasserstein 2-distance, total variation and relative entropy are also given, together with numerical bias estimates.