Abstract:Multimodal learning is of continued interest in artificial intelligence-based applications, motivated by the potential information gain from combining different types of data. However, modalities collected and curated during development may differ from the modalities available at deployment due to multiple factors including cost, hardware failure, or -- as we argue in this work -- the perceived informativeness of a given modality. Na{\"i}ve estimation of the information gain associated with including an additional modality without accounting for missingness may result in improper estimates of that modality's value in downstream tasks. Our work formalizes the problem of missingness in multimodal learning and demonstrates the biases resulting from ignoring this process. To address this issue, we introduce ICYM2I (In Case You Multimodal Missed It), a framework for the evaluation of predictive performance and information gain under missingness through inverse probability weighting-based correction. We demonstrate the importance of the proposed adjustment to estimate information gain under missingness on synthetic, semi-synthetic, and real-world medical datasets.
Abstract:Background: Artificial intelligence language models have shown promise in various applications, including assisting with clinical decision-making as demonstrated by strong performance of large language models on medical licensure exams. However, their ability to solve complex, open-ended cases, which may be representative of clinical practice, remains unexplored. Methods: In this study, the accuracy of large language AI models GPT4 and GPT3.5 in diagnosing complex clinical cases was investigated using published Case Records of the Massachusetts General Hospital. A total of 50 cases requiring a diagnosis and diagnostic test published from January 1, 2022 to April 16, 2022 were identified. For each case, models were given a prompt requesting the top three specific diagnoses and associated diagnostic tests, followed by case text, labs, and figure legends. Model outputs were assessed in comparison to the final clinical diagnosis and whether the model-predicted test would result in a correct diagnosis. Results: GPT4 and GPT3.5 accurately provided the correct diagnosis in 26% and 22% of cases in one attempt, and 46% and 42% within three attempts, respectively. GPT4 and GPT3.5 provided a correct essential diagnostic test in 28% and 24% of cases in one attempt, and 44% and 50% within three attempts, respectively. No significant differences were found between the two models, and multiple trials with identical prompts using the GPT3.5 model provided similar results. Conclusions: In summary, these models demonstrate potential usefulness in generating differential diagnoses but remain limited in their ability to provide a single unifying diagnosis in complex, open-ended cases. Future research should focus on evaluating model performance in larger datasets of open-ended clinical challenges and exploring potential human-AI collaboration strategies to enhance clinical decision-making.