Abstract:Satellite Image Time Series (SITS) data has proven effective for agricultural tasks due to its rich spectral and temporal nature. In this study, we tackle the task of stress detection in sugar-beet fields using a fully unsupervised approach. We propose a 3D convolutional autoencoder model to extract meaningful features from Sentinel-2 image sequences, combined with acquisition-date-specific temporal encodings to better capture the growth dynamics of sugar-beets. The learned representations are used in a downstream clustering task to separate stressed from healthy fields. The resulting stress detection system can be directly applied to data from different years, offering a practical and accessible tool for stress detection in sugar-beets.
Abstract:Diffusion models have emerged as powerful generative models, inspiring extensive research into their underlying mechanisms. One of the key questions in this area is the loss functions these models shall train with. Multiple formulations have been introduced in the literature over the past several years with some links and some critical differences stemming from various initial considerations. In this paper, we explore the different target objectives and corresponding loss functions in detail. We present a systematic overview of their relationships, unifying them under the framework of the variational lower bound objective. We complement this theoretical analysis with an empirical study providing insights into the conditions under which these objectives diverge in performance and the underlying factors contributing to such deviations. Additionally, we evaluate how the choice of objective impacts the model ability to achieve specific goals, such as generating high-quality samples or accurately estimating likelihoods. This study offers a unified understanding of loss functions in diffusion models, contributing to more efficient and goal-oriented model designs in future research.
Abstract:Recently, several methods have leveraged deep generative modeling to produce example-based explanations of decision algorithms for high-dimensional input data. Despite promising results, a disconnect exists between these methods and the classical explainability literature, which focuses on lower-dimensional data with semantically meaningful features. This conceptual and communication gap leads to misunderstandings and misalignments in goals and expectations. In this paper, we bridge this gap by proposing a novel probabilistic framework for local example-based explanations. Our framework integrates the critical characteristics of classical local explanation desiderata while being amenable to high-dimensional data and their modeling through deep generative models. Our aim is to facilitate communication, foster rigor and transparency, and improve the quality of peer discussion and research progress.
Abstract:To sample from an unconditionally trained Denoising Diffusion Probabilistic Model (DDPM), classifier guidance adds conditional information during sampling, but the gradients from classifiers, especially those not trained on noisy images, are often unstable. This study conducts a gradient analysis comparing robust and non-robust classifiers, as well as multiple gradient stabilization techniques. Experimental results demonstrate that these techniques significantly improve the quality of class-conditional samples for non-robust classifiers by providing more stable and informative classifier guidance gradients. The findings highlight the importance of gradient stability in enhancing the performance of classifier guidance, especially on non-robust classifiers.
Abstract:Latest methods for visual counterfactual explanations (VCE) harness the power of deep generative models to synthesize new examples of high-dimensional images of impressive quality. However, it is currently difficult to compare the performance of these VCE methods as the evaluation procedures largely vary and often boil down to visual inspection of individual examples and small scale user studies. In this work, we propose a framework for systematic, quantitative evaluation of the VCE methods and a minimal set of metrics to be used. We use this framework to explore the effects of certain crucial design choices in the latest diffusion-based generative models for VCEs of natural image classification (ImageNet). We conduct a battery of ablation-like experiments, generating thousands of VCEs for a suite of classifiers of various complexity, accuracy and robustness. Our findings suggest multiple directions for future advancements and improvements of VCE methods. By sharing our methodology and our approach to tackle the computational challenges of such a study on a limited hardware setup (including the complete code base), we offer a valuable guidance for researchers in the field fostering consistency and transparency in the assessment of counterfactual explanations.