Abstract:An energy-based modeling framework for the nonlinear dynamics of spatial Cosserat rods undergoing large displacements and rotations is proposed. The mixed formulation features independent displacement, velocity and stress variables and is further objective and locking-free. Finite rotations are represented using a director formulation that avoids singularities and yields a constant mass matrix. This results in an infinite-dimensional nonlinear port-Hamiltonian (PH) system governed by partial differential-algebraic equations with a quadratic energy functional. Using a time-differentiated compliance form of the stress-strain relations allows for the imposition of kinematic constraints, such as inextensibility or shear-rigidity. A structure-preserving finite element discretization leads to a finite-dimensional system with PH structure, thus facilitating the design of an energy-momentum consistent integration scheme. Dissipative material behavior (via the generalized-Maxwell model) and non-standard actuation approaches (via pneumatic chambers or tendons) integrate naturally into the framework. As illustrated by selected numerical examples, the present framework establishes a new approach to energy-momentum consistent formulations in computational mechanics involving finite rotations.
Abstract:Discrete gradient methods are a powerful tool for the time discretization of dynamical systems, since they are structure-preserving regardless of the form of the total energy. In this work, we discuss the application of discrete gradient methods to the system class of nonlinear port-Hamiltonian differential-algebraic equations - as they emerge from the port- and energy-based modeling of physical systems in various domains. We introduce a novel numerical scheme tailored for semi-explicit differential-algebraic equations and further address more general settings using the concepts of discrete gradient pairs and Dirac-dissipative structures. Additionally, the behavior under system transformations is investigated and we demonstrate that under suitable assumptions port-Hamiltonian differential-algebraic equations admit a representation which consists of a parametrized port-Hamiltonian semi-explicit system and an unstructured equation. Finally, we present the application to multibody system dynamics and discuss numerical results to demonstrate the capabilities of our approach.