Abstract:Quantum classifiers are vulnerable to adversarial attacks that manipulate their input classical or quantum data. A promising countermeasure is adversarial training, where quantum classifiers are trained by using an attack-aware, adversarial loss function. This work establishes novel bounds on the generalization error of adversarially trained quantum classifiers when tested in the presence of perturbation-constrained adversaries. The bounds quantify the excess generalization error incurred to ensure robustness to adversarial attacks as scaling with the training sample size $m$ as $1/\sqrt{m}$, while yielding insights into the impact of the quantum embedding. For quantum binary classifiers employing \textit{rotation embedding}, we find that, in the presence of adversarial attacks on classical inputs $\mathbf{x}$, the increase in sample complexity due to adversarial training over conventional training vanishes in the limit of high dimensional inputs $\mathbf{x}$. In contrast, when the adversary can directly attack the quantum state $\rho(\mathbf{x})$ encoding the input $\mathbf{x}$, the excess generalization error depends on the choice of embedding only through its Hilbert space dimension. The results are also extended to multi-class classifiers. We validate our theoretical findings with numerical experiments.
Abstract:In a manner analogous to their classical counterparts, quantum classifiers are vulnerable to adversarial attacks that perturb their inputs. A promising countermeasure is to train the quantum classifier by adopting an attack-aware, or adversarial, loss function. This paper studies the generalization properties of quantum classifiers that are adversarially trained against bounded-norm white-box attacks. Specifically, a quantum adversary maximizes the classifier's loss by transforming an input state $\rho(x)$ into a state $\lambda$ that is $\epsilon$-close to the original state $\rho(x)$ in $p$-Schatten distance. Under suitable assumptions on the quantum embedding $\rho(x)$, we derive novel information-theoretic upper bounds on the generalization error of adversarially trained quantum classifiers for $p = 1$ and $p = \infty$. The derived upper bounds consist of two terms: the first is an exponential function of the 2-R\'enyi mutual information between classical data and quantum embedding, while the second term scales linearly with the adversarial perturbation size $\epsilon$. Both terms are shown to decrease as $1/\sqrt{T}$ over the training set size $T$ . An extension is also considered in which the adversary assumed during training has different parameters $p$ and $\epsilon$ as compared to the adversary affecting the test inputs. Finally, we validate our theoretical findings with numerical experiments for a synthetic setting.