Abstract:Recent advances in learned control, large-scale simulation, and generative models have accelerated progress toward general-purpose robotic controllers, yet the field still lacks platforms suitable for safe, expressive, long-term deployment in human environments. Most existing humanoids are either closed industrial systems or academic prototypes that are difficult to deploy and operate around people, limiting progress in robotics. We introduce Sprout, a developer platform designed to address these limitations through an emphasis on safety, expressivity, and developer accessibility. Sprout adopts a lightweight form factor with compliant control, limited joint torques, and soft exteriors to support safe operation in shared human spaces. The platform integrates whole-body control, manipulation with integrated grippers, and virtual-reality-based teleoperation within a unified hardware-software stack. An expressive head further enables social interaction -- a domain that remains underexplored on most utilitarian humanoids. By lowering physical and technical barriers to deployment, Sprout expands access to capable humanoid platforms and provides a practical basis for developing embodied intelligence in real human environments.
Abstract:The matrix exponential is a fundamental operator in scientific computing and system simulation, with applications ranging from control theory and quantum mechanics to modern generative machine learning. While Padé approximants combined with scaling and squaring have long served as the standard, recent Taylor-based methods, which utilize polynomial evaluation schemes that surpass the classical Paterson--Stockmeyer technique, offer superior accuracy and reduced computational complexity. This paper presents an optimized Taylor-based algorithm for the matrix exponential, specifically designed for the high-throughput requirements of generative AI flows. We provide a rigorous error analysis and develop a dynamic selection strategy for the Taylor order and scaling factor to minimize computational effort under a prescribed error tolerance. Extensive numerical experiments demonstrate that our approach provides significant acceleration and maintains high numerical stability compared to existing state-of-the-art implementations. These results establish the proposed method as a highly efficient tool for large-scale generative modeling.