Abstract:To efficiently tune configuration for better system performance (e.g., latency), many tuners have leveraged a surrogate model to expedite the process instead of solely relying on the profoundly expensive system measurement. As such, it is naturally believed that we need more accurate models. However, the fact of accuracy can lie-a somewhat surprising finding from prior work-has left us many unanswered questions regarding what role the surrogate model plays in configuration tuning. This paper provides the very first systematic exploration and discussion, together with a resolution proposal, to disclose the many faces of surrogate models for configuration tuning, through the novel perspective of fitness landscape analysis. We present a theory as an alternative to accuracy for assessing the model usefulness in tuning, based on which we conduct an extensive empirical study involving up to 27,000 cases. Drawing on the above, we propose Model4Tune, an automated predictive tool that estimates which model-tuner pairs are the best for an unforeseen system without expensive tuner profiling. Our results suggest that Moldel4Tune, as one of the first of its kind, performs significantly better than random guessing in 79%-82% of the cases. Our results not only shed light on the possible future research directions but also offer a practical resolution that can assist practitioners in evaluating the most useful model for configuration tuning.




Abstract:To ease the expensive measurements during configuration tuning, it is natural to build a surrogate model as the replacement of the system, and thereby the configuration performance can be cheaply evaluated. Yet, a stereotype therein is that the higher the model accuracy, the better the tuning result would be. This "accuracy is all" belief drives our research community to build more and more accurate models and criticize a tuner for the inaccuracy of the model used. However, this practice raises some previously unaddressed questions, e.g., Do those somewhat small accuracy improvements reported in existing work really matter much to the tuners? What role does model accuracy play in the impact of tuning quality? To answer those related questions, we conduct one of the largest-scale empirical studies to date-running over the period of 13 months 24*7-that covers 10 models, 17 tuners, and 29 systems from the existing works while under four different commonly used metrics, leading to 13,612 cases of investigation. Surprisingly, our key findings reveal that the accuracy can lie: there are a considerable number of cases where higher accuracy actually leads to no improvement in the tuning outcomes (up to 58% cases under certain setting), or even worse, it can degrade the tuning quality (up to 24% cases under certain setting). We also discover that the chosen models in most proposed tuners are sub-optimal and that the required % of accuracy change to significantly improve tuning quality varies according to the range of model accuracy. Deriving from the fitness landscape analysis, we provide in-depth discussions of the rationale behind, offering several lessons learned as well as insights for future opportunities. Most importantly, this work poses a clear message to the community: we should take one step back from the natural "accuracy is all" belief for model-based configuration tuning.